Periodic solutions of a 2nth-order nonlinear difference equation

被引:40
|
作者
Zhou Zhan [1 ]
Yu JianShe [1 ]
Chen YuMing [2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
periodic solution; nonlinear difference equation; critical point theory; HAMILTONIAN-SYSTEMS; SUBHARMONIC SOLUTIONS; EXISTENCE; DISCONJUGACY; OSCILLATION; THEOREMS; GROWTH;
D O I
10.1007/s11425-009-0167-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a 2nth-order nonlinear difference equation is considered. Using the critical point theory, we establish various sets of sufficient conditions of the nonexistence and existence of periodic solutions. Results obtained complement or improve the existing ones.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 50 条
  • [1] Periodic solutions of a 2nth-order nonlinear difference equation
    Zhan Zhou
    JianShe Yu
    YuMing Chen
    Science in China Series A: Mathematics, 2010, 53 : 41 - 50
  • [2] Periodic solutions of a 2nth-order nonlinear difference equation
    ZHOU Zhan 1
    2 Department of Mathematics
    Science China Mathematics, 2010, (01) : 41 - 50
  • [3] Periodic solutions of a 2nth-order nonlinear difference equation
    ZHOU Zhan YU JianShe CHEN YuMing School of Mathematics and Information Science Guangzhou University Guangzhou China Department of Mathematics Wilfrid Laurier University Waterloo NL C Canada
    ScienceinChina(SeriesA:Mathematics), 2010, 53 (01) : 41 - 50
  • [4] Existence of Periodic Solutions for a 2nth-order Nonlinear Difference Equation
    Shi, Haiping
    Zhang, Yuanbiao
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (01): : 143 - 160
  • [5] Periodic and subharmonic solutions for a 2nth-order nonlinear difference equation
    Liu, Xia
    Zhang, Yuanbiao
    Shi, Haiping
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (02): : 351 - 362
  • [6] Existence of periodic solutions for a 2nth-order nonlinear difference equation
    Cai, Xiaochun
    Yu, Jianshe
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) : 870 - 878
  • [7] Existence of Periodic Solutions for a 2nth-Order Difference Equation Involving p-Laplacian
    Liu, Xia
    Zhang, Yuanbiao
    Shi, Haiping
    Deng, Xiaoqing
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (03) : 1107 - 1125
  • [8] Periodic and subharmonic solutions for a 2nth-order difference equation involving p-Laplacian
    Deng, Xiaoqing
    Liu, Xia
    Zhang, Yuanbiao
    Shi, Haiping
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (03): : 613 - 625
  • [9] EXISTENCE OF PERIODIC SOLUTIONS FOR 2nTH-ORDER NONLINEAR p-LAPLACIAN DIFFERENCE EQUATIONS
    Shi, Haiping
    Liu, Xia
    Zhang, Yuanbiao
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (05) : 1679 - 1699
  • [10] Periodic solutions for a class of nonlinear 2nth-order differential equations
    Xu, Min
    Wang, Wentao
    Yi, Xuejun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3399 - 3405