ONE DIMENSIONAL FRACTIONAL ORDER TGV: GAMMA-CONVERGENCE AND BILEVEL TRAINING SCHEME*

被引:7
作者
Davoli, Elisa [1 ]
Liu, Pan [2 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge Image Anal, Wilberforce Rd, Cambridge CB3 0WA, England
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
total generalized variation; fractional derivatives; optimization and control; computer vision and pattern recognition; IMAGE-RESTORATION; MODEL; SOBOLEV; PARAMETERS; BESOV;
D O I
10.4310/CMS.2018.v16.n1.a10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New fractional r-order seminorms, TGV(r), r is an element of R, r >= 1, are proposed in the one-dimensional (1D) setting, as a generalization of the integer order TGV(k)-seminorms, k is an element of N. The fractional r-order TGV(r)-seminorms are shown to be intermediate between the integer order TGV(k)-seminorms. A bilevel training scheme is proposed, where under a box constraint a simultaneous optimization with respect to parameters and order of derivation is performed. Existence of solutions to the bilevel training scheme is proved by Gamma-convergence. Finally, the numerical landscape of the cost function associated to the bilevel training scheme is discussed for two numerical examples.
引用
收藏
页码:213 / 237
页数:25
相关论文
共 43 条
[1]  
Adams R A., 2003, SOBOLEV SPACES, pp 140
[2]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[3]  
[Anonymous], 2007, IEEE Conference on Computer Vision and Pattern Recognition, (CVPR'07)
[4]  
[Anonymous], 1993, An Introduction to-Convergence
[5]  
Benning M., 2017, ARXIV160201278
[6]   Optimal control of problems governed by abstract elliptic variational inequalities with state constraints [J].
Bergounioux, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (01) :273-289
[7]   Limiting embedding theorems for Ws,p,p when s ↑ 1 and applications [J].
Bourgain, J ;
Brezis, H ;
Mironescu, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :77-101
[8]  
Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
[9]  
Boyd S, 2004, CONVEX OPTIMIZATION
[10]  
Braides, 2002, G-convergence for beginners