Finite-difference Time-domain Algorithm for Plasma Based on Trapezoidal Recursive Convolution Technique

被引:5
作者
Liu, Song [1 ,2 ]
Liu, Sanqiu [1 ]
Liu, Shaobin [2 ]
机构
[1] Nanchang Univ, Sch Sci, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Informat Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite-difference time-domain (FDTD); Trapezoidal recursive convolution (TRC); Unmagnetized plasma; Radar cross section (RCS); ELECTROMAGNETIC DISPERSIVE MEDIA; FDTD FORMULATION;
D O I
10.1007/s10762-010-9619-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The electromagnetic wave propagation in plasma media is modeled using finite-difference time-domain (FDTD) method based on the trapezoidal recursive convolution (TRC) Technique. The TRC Technique requires single convolution integral in the formulation as in the recursive convolution (RC) method, while maintaining the accuracy comparable to the piecewise linear convolution integral (PLRC) method with two convolution integrals. The three dimensional (3-D) TRC-FDTD formulations for plasma are derived. The high accuracy and efficiency of the presented method is confirmed by computing the transmission and reflection coefficients for a unmagnetized collision plasma slab. The backward radar cross section (RCS) of perfectly conducting sphere covered by homogeneous and inhomogeneous plasma is calculated.
引用
收藏
页码:620 / 628
页数:9
相关论文
共 11 条
[1]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[2]   An FDTD formulation for dispersive media using a current density [J].
Chen, Q ;
Katsurai, M ;
Aoyagi, PH .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1998, 46 (11) :1739-1746
[3]   Piecewise linear recursive convolution for dispersive media using FDTD [J].
Kelley, DF ;
Luebbers, RJ .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (06) :792-797
[4]   A novel FDTD formulation for dispersive media [J].
Liu, SB ;
Yuan, NC ;
Mo, JJ .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2003, 13 (05) :187-189
[5]   A FREQUENCY-DEPENDENT FINITE-DIFFERENCE TIME-DOMAIN FORMULATION FOR DISPERSIVE MATERIALS [J].
LUEBBERS, R ;
HUNSBERGER, FP ;
KUNZ, KS ;
STANDLER, RB ;
SCHNEIDER, M .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1990, 32 (03) :222-227
[6]   FDTD FOR NTH-ORDER DISPERSIVE MEDIA [J].
LUEBBERS, RJ ;
HUNSBERGER, F .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (11) :1297-1301
[7]   FDTD modeling of wave propagation in dispersive media by using the Mobius transformation technique [J].
Pereda, JA ;
Vegas, A ;
Prieto, A .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (07) :1689-1695
[8]   Simple Trapezoidal Recursive Convolution Technique for the Frequency-Dependent FDTD Analysis of a Drude-Lorentz Model [J].
Shibayama, Jun ;
Ando, Ryoji ;
Nomura, Akifumi ;
Yamauchi, Junji ;
Nakano, Hisamatsu .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21 (1-4) :100-102
[9]   Efficient evaluation of convolution integrals arising in FDTD formulations of electromagnetic dispersive media [J].
Siushansian, R ;
LoVetri, J .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1997, 11 (01) :101-117
[10]   A COMPARISON OF NUMERICAL TECHNIQUES FOR MODELING ELECTROMAGNETIC DISPERSIVE MEDIA [J].
SIUSHANSIAN, R ;
LOVETRI, J .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1995, 5 (12) :426-428