Rank-one convexity implies polyconvexity in isotropic planar incompressible elasticity

被引:9
作者
Ghiba, Ionel-Dumitrel [1 ,2 ,3 ]
Martin, Robert J. [1 ]
Neff, Patrizio [1 ]
机构
[1] Univ Duisburg Essen, Lehrstuhl Nichtlineare Anal & Modellierung, Fak Math, Thea Leymann Str 9, D-45127 Essen, Germany
[2] Alexandru Ioan Cuza Univ, Dept Math, Blvd Carol 1,11, Iasi 700506, Romania
[3] Romanian Acad, Iasi Branch, Octav Mayer Inst Math, Iasi 700505, Romania
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2018年 / 116卷
关键词
Rank-one convexity; Polyconvexity; Quasiconvexity; Nonlinear elasticity; Morrey's conjecture; Volumetric-isochoric split; SUFFICIENT CONDITIONS; STRONG ELLIPTICITY; EQUILIBRIUM EQUATIONS; QUADRATIC-FORMS; DIMENSIONS; STRAIN; QUASICONVEXITY; ELASTOSTATICS;
D O I
10.1016/j.matpur.2018.06.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study convexity properties of energy functions in plane nonlinear elasticity of incompressible materials and show that rank-one convexity of an objective and isotropic elastic energy W on the special linear group SL(2) implies the polyconvexity of W. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:88 / 104
页数:17
相关论文
共 53 条
[1]   DISCONTINUOUS DEFORMATION GRADIENTS IN PLANE FINITE ELASTOSTATICS OF INCOMPRESSIBLE MATERIALS [J].
ABEYARATNE, RC .
JOURNAL OF ELASTICITY, 1980, 10 (03) :255-293
[2]   AN EXAMPLE OF A QUASI-CONVEX FUNCTION THAT IS NOT POLYCONVEX IN 2 DIMENSIONS [J].
ALIBERT, JJ ;
DACOROGNA, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 117 (02) :155-166
[3]   Deficiencies in numerical models of anisotropic nonlinearly elastic materials [J].
Annaidh, A. Ni ;
Destrade, M. ;
Gilchrist, M. D. ;
Murphy, J. G. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2013, 12 (04) :781-791
[4]  
[Anonymous], 1977, Herriot Watt Symposion: Nonlinear Analysis and Mechanics
[5]   NECESSARY AND SUFFICIENT CONDITIONS FOR ISOTROPIC RANK-ONE CONVEX-FUNCTIONS IN DIMENSION-2 [J].
AUBERT, G .
JOURNAL OF ELASTICITY, 1995, 39 (01) :31-46
[6]  
BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
[7]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[8]  
Charles B., 1952, PAC J MATH, V2, P25, DOI DOI 10.2140/PJM.1952.2.25)
[9]   Rank-one convexity implies quasi-convexity on certain hypersurfaces [J].
Chaudhuri, N ;
Müller, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1263-1272
[10]   Quasiconvex functions incorporating volumetric constraints are rank-one convex [J].
Conti, Sergio .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (01) :15-30