Correction of laser-induced incandescence signal trapping in soot measurement in a microgravity boundary layer laminar diffusion flame

被引:5
作者
Escudero, F. [1 ]
Cruz, J. J. [1 ]
Liu, F. [2 ]
Fuentes, A. [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Ind, Av Espana 1680,Casilla 110-5, Valparaiso, Chile
[2] CNR, Measurement Sci & Stand, Bldg M-9,1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
关键词
Planar LII; LII signal trapping; Soot volume fraction; Axisymmetric flame; 3D boundary layer flame; ABSORPTION; CALIBRATION;
D O I
10.1016/j.proci.2020.07.091
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work presents a novel method to auto-correct the trapping effect of laser-induced incandescence (LII) signals inside the flame to obtain soot volume fraction distributions in laminar axisymmetric (2D) and threedimensional (3D) flames using planar LII. The development of the proposed model is described with an estimation of the propagated uncertainties. The proposed model is firstly numerically validated in a canonical 2D coflow Santoro flame using synthetic LII signals and soot properties predicted by the CoFlame code. Secondly, experimental measurements of LII were carried out in the same 2D coflow Santoro flame and the LII signals were converted to soot volume fraction using the proposed model. Simultaneous LII and line of-sight attenuation measurements were conducted to obtain the calibration factor. The proposed model automatically took into account the signal trapping effect in the conversion of the detected LII signal to soot volume fraction. Finally, the validated methodology is applied to a 3D laminar boundary layer diffusion flame established in microgravity. The significant differences in the measured soot volume fraction distributions with and without considering signal trapping, particularly in the 3D zone of the flame, demonstrate the importance of considering signal trapping to LII measurements of soot volume fraction in this flame. The model developed in this work can be readily applied in planar LII measurements of soot in any flame configuration as long as it is steady or statistically steady, to allow measurements to be performed at different positions inside a flame, such as for pool-fires or pulsating flames. (c) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:4825 / 4835
页数:11
相关论文
共 22 条
  • [1] Influence of water-vapor in oxidizer stream on the sooting behavior for laminar coflow ethylene diffusion flames
    Cepeda, Francisco
    Jerez, Alejandro
    Demarco, Rodrigo
    Liu, Fengshan
    Fuentes, Andres
    [J]. COMBUSTION AND FLAME, 2019, 210 : 114 - 125
  • [2] DETERMINATION OF THE WAVELENGTH DEPENDENCE OF REFRACTIVE-INDEXES OF FLAME SOOT
    CHANG, H
    CHARALAMPOPOULOS, TT
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1990, 430 (1880): : 577 - 591
  • [3] Choi MY, 1998, COMBUST FLAME, V112, P485
  • [4] Spectrally resolved light absorption properties of cooled soot from a methane flame
    Coderre, A. R.
    Thomson, K. A.
    Snelling, D. R.
    Johnson, M. R.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 104 (01): : 175 - 188
  • [5] Oxygen index effect on the structure of a laminar boundary layer diffusion flame in a reduced gravity environment
    Contreras, J.
    Consalvi, J. -L.
    Fuentes, A.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2017, 36 (02) : 3237 - 3245
  • [6] CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames
    Eaves, Nick A.
    Zhang, Qingan
    Liu, Fengshan
    Guo, Hongsheng
    Dworkin, Seth B.
    Thomson, Murray J.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2016, 207 : 464 - 477
  • [7] Multi-diagnostic soot measurements in a laminar diffusion flame to assess the ISF database consistency
    Franzelli, B.
    Roussillo, M.
    Scouflaire, P.
    Bonnety, J.
    Jalain, R.
    Dormieux, T.
    Candel, S.
    Legros, G.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (02) : 1355 - 1363
  • [8] Interactions between soot and CH* in a laminar boundary layer type diffusion flame in microgravity
    Fuentes, A.
    Legros, G.
    Claverie, A.
    Joulain, P.
    Vantelon, J. -P.
    Torero, J. L.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2007, 31 : 2685 - 2692
  • [9] Laser-induced incandescence calibration in a three-dimensional laminar diffusion flame
    Fuentes, A.
    Legros, G.
    El-Rabii, H.
    Vantelon, J. -P.
    Joulain, P.
    Torero, J. L.
    [J]. EXPERIMENTS IN FLUIDS, 2007, 43 (06) : 939 - 948
  • [10] Quantifying uncertainty in auto-compensating laser-induced incandescence parameters due to multiple nuisance parameters
    Hadwin, Paul J.
    Sipkens, T. A.
    Thomson, K. A.
    Liu, F.
    Daun, K. J.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2017, 123 (04):