Deformations of conformal theories and non-toric quiver gauge theories

被引:22
|
作者
Butti, Agostino [1 ]
Zaffaroni, Alberto
Forcella, Davide
机构
[1] Univ Milano Bicocca, Pzza Sci 3, I-20126 Milan, Italy
[2] Univ Milano Bicocca, Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy
[3] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2007年 / 02期
关键词
AdS-CFT correspondence; gauge-gravity correspondence;
D O I
10.1088/1126-6708/2007/02/081
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss several examples of non-toric quiver gauge theories dual to Sasaki-Einstein manifolds with U(1) 2 or U(1) isometry. We give a general method for constructing non-toric examples by adding relevant deformations to the toric case. For all examples, we are able to make a complete comparison between the prediction for R-charges based on geometry and on quantum field theory. We also give a general discussion of the spectrum of conformal dimensions for mesonic and baryonic operators for a generic quiver theory; in the toric case we make an explicit comparison between R-charges of mesons and baryons.
引用
收藏
页数:51
相关论文
共 50 条
  • [1] Instantons and toric quiver gauge theories
    Argurio, Riccardo
    Ferretti, Gabriele
    Petersson, Christoffer
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07):
  • [2] Non-perturbative studies of N=2 conformal quiver gauge theories
    Ashok, S. K.
    Billo, M.
    Dell'Aquila, E.
    Frau, M.
    John, R. R.
    Lerda, A.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2015, 63 (05): : 259 - 293
  • [3] Zig-zag deformations of toric quiver gauge theories. Part I. Reflexive polytopes
    Cremonesi, Stefano
    Sa, Jose
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (05):
  • [4] Gauge theories on compact toric surfaces, conformal field theories and equivariant Donaldson invariants
    Bershtein, Mikhail
    Bonelli, Giulio
    Ronzani, Massimiliano
    Tanzini, Alessandro
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 118 : 40 - 50
  • [5] Probing the space of toric quiver theories
    Joseph Hewlett
    Yang-Hui He
    Journal of High Energy Physics, 2010
  • [6] Probing the space of toric quiver theories
    Hewlett, Joseph
    He, Yang-Hui
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (03):
  • [7] Circular quiver gauge theories, isomonodromic deformations and WN fermions on the torus
    Bonelli, Giulio
    Del Monte, Fabrizio
    Gavrylenko, Pavlo
    Tanzini, Alessandro
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (03)
  • [8] Covariant quiver gauge theories
    Szabo, Richard J.
    Valdivia, Omar
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [9] Continuous quiver gauge theories
    Sobko, Evgeny
    PHYSICAL REVIEW D, 2025, 111 (04)
  • [10] Superpotentials for quiver gauge theories
    Aspinwall, Paul S.
    Fidkowski, Lukasz M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (10):