Small Dynamical Heights for Quadratic Polynomials and Rational Functions

被引:4
作者
Benedetto, Robert L. [1 ]
Chen, Ruqian [1 ]
Hyde, Trevor [2 ]
Kovacheva, Yordanka [3 ]
White, Colin [1 ]
机构
[1] Amherst Coll, Dept Math & Stat, Amherst, MA 01002 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
canonical height; arithmetic dynamics; preperiodic points; PERIODIC POINTS; ARITHMETIC PROPERTIES; PREPERIODIC POINTS; CYCLES; MAPS;
D O I
10.1080/10586458.2014.938203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi is an element of Q(z) be a polynomial or rational function of degree 2. A special case of Morton and Silverman's dynamical uniform boundedness conjecture states that the number of rational preperiodic points of phi is bounded above by an absolute constant. A related conjecture of Silverman states that the canonical height (h) over cap (phi)(x) of a nonpreperiodic rational point x is bounded below by a uniform multiple of the height of phi itself. We provide support for these conjectures by computing the set of preperiodic and small-height rational points for a set of degree-2 maps far beyond the range of previous searches.
引用
收藏
页码:433 / 447
页数:15
相关论文
共 28 条
[1]  
[Anonymous], 2007, ARITHMETIC DYNAMICAL
[2]  
Baker M, 2006, MATH RES LETT, V13, P245
[3]   Preperiodic points of polynomials over global fields [J].
Benedetto, Robert L. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :123-153
[4]   Canonical heights on projective space [J].
Call, GS ;
Goldstine, SW .
JOURNAL OF NUMBER THEORY, 1997, 63 (02) :211-243
[5]  
CARLESON L, 1991, COMPLEX DYNAMICS
[6]   Cycles of quadratic polynomials and rational points on a genus-2 curve [J].
Flynn, EV ;
Poonen, B ;
Schaefer, EF .
DUKE MATHEMATICAL JOURNAL, 1997, 90 (03) :435-463
[7]  
Gouvea F. Q., 1997, P ADIC NUMBERS INTRO
[8]  
Hindry M, 2000, GRADUATE TEXTS MATH
[9]  
Ingram P, 2009, MONATSH MATH, V157, P69, DOI 10.1007/s00605-008-0018-6
[10]  
Lang S., 1983, Fundamentals of Diophantine geometry, DOI 10.1007/978-1-4757-1810-2