Betti splitting via componentwise linear ideals

被引:8
|
作者
Bolognini, Davide [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
关键词
Betti numbers of monomial ideals; Componentwise linear ideals; Simplicial complexes; Fat points; MONOMIAL IDEALS; FAT POINTS; RESOLUTIONS; NUMBERS; MODULES; RINGS;
D O I
10.1016/j.jalgebra.2016.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A monomial ideal I admits a Betti splitting I = J + K if the Betti numbers of I can be determined in terms of the Betti numbers of the ideals J, K and J boolean AND K. Given a monomial ideal I, we prove that I = J + K is a Betti splitting of I, provided J and K are componentwise linear, generalizing a result of Francisco, Ha, and Van Tuyl. If I has a linear resolution, the converse also holds. We apply this result recursively to the Alexander dual of vertex-decomposable, shellable and constructible simplicial complexes. Moreover we determine the graded Betti numbers of the defining ideal of three general fat points in the projective space. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] ON THE BETTI NUMBERS OF PERFECT IDEALS
    VALLA, G
    COMPOSITIO MATHEMATICA, 1994, 91 (03) : 305 - 319
  • [32] COMPONENTWISE LINEARITY OF IDEALS ARISING FROM GRAPHS
    Crispin, Veronica
    Emtander, Eric
    MATEMATICHE, 2008, 63 (02): : 185 - 189
  • [33] Betti numbers of symmetric shifted ideals
    Biermann, Jennifer
    de Alba, Hernan
    Galetto, Federico
    Murai, Satoshi
    Nagel, Uwe
    O'Keefe, Augustine
    Roemer, Tim
    Seceleanu, Alexandra
    JOURNAL OF ALGEBRA, 2020, 560 : 312 - 342
  • [34] Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers
    Huy Tài Hà
    Adam Van Tuyl
    Journal of Algebraic Combinatorics, 2008, 27 : 215 - 245
  • [35] Dimensions of Betti cones on edge ideals
    Carey, David
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (09)
  • [36] BETTI NUMBERS OF PERFECT HOMOGENEOUS IDEALS
    LORENZINI, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 60 (03) : 273 - 288
  • [37] Betti Numbers of Transversal Monomial Ideals
    Zaare-Nahandi, Rahim
    ALGEBRA COLLOQUIUM, 2011, 18 : 925 - 936
  • [38] Multigraded Betti numbers of multipermutohedron ideals
    Kumar, Ashok
    Kumar, Chanchal
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2013, 28 (01) : 1 - 18
  • [39] GRADED BETTI NUMBERS OF POWERS OF IDEALS
    Bagheri, Amir
    Lamei, Kamran
    JOURNAL OF COMMUTATIVE ALGEBRA, 2020, 12 (02) : 153 - 169
  • [40] On the Betti polynomials of certain graded ideals
    Failla, Gioia
    Tang, Zhongming
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) : 3135 - 3146