Betti splitting via componentwise linear ideals

被引:8
|
作者
Bolognini, Davide [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
关键词
Betti numbers of monomial ideals; Componentwise linear ideals; Simplicial complexes; Fat points; MONOMIAL IDEALS; FAT POINTS; RESOLUTIONS; NUMBERS; MODULES; RINGS;
D O I
10.1016/j.jalgebra.2016.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A monomial ideal I admits a Betti splitting I = J + K if the Betti numbers of I can be determined in terms of the Betti numbers of the ideals J, K and J boolean AND K. Given a monomial ideal I, we prove that I = J + K is a Betti splitting of I, provided J and K are componentwise linear, generalizing a result of Francisco, Ha, and Van Tuyl. If I has a linear resolution, the converse also holds. We apply this result recursively to the Alexander dual of vertex-decomposable, shellable and constructible simplicial complexes. Moreover we determine the graded Betti numbers of the defining ideal of three general fat points in the projective space. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] Betti numbers of monomial ideals via facet covers
    Erey, Nursel
    Faridi, Sara
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (05) : 1990 - 2000
  • [22] Powers of componentwise linear ideals: the Herzog–Hibi–Ohsugi conjecture and related problems
    Huy Tài Hà
    Adam Van Tuyl
    Research in the Mathematical Sciences, 2022, 9
  • [23] Componentwise linearity of powers of cover ideals
    S. Selvaraja
    Joseph W. Skelton
    Journal of Algebraic Combinatorics, 2023, 57 : 111 - 134
  • [24] BETTI NUMBERS OF PIECEWISELEX IDEALS
    Jamroz, Christina
    Sosa, Gabriel
    JOURNAL OF COMMUTATIVE ALGEBRA, 2018, 10 (03) : 339 - 345
  • [25] Betti numbers of binomial ideals
    de Alba, Hernan
    Morales, Marcel
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 80 : 387 - 402
  • [26] Powers of componentwise linear ideals: the Herzog-Hibi-Ohsugi conjecture and related problems
    Ha, Huy Tai
    Van Tuyl, Adam
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (02)
  • [27] Componentwise linearity of powers of cover ideals
    Selvaraja, S.
    Skelton, Joseph W.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (01) : 111 - 134
  • [28] Ideals with stable Betti numbers
    Aramova, A
    Herzog, J
    Hibi, T
    ADVANCES IN MATHEMATICS, 2000, 152 (01) : 72 - 77
  • [29] BETTI NUMBERS OF POWERS OF IDEALS
    Failla, Gioia
    La Barbiera, Monica
    Stagliano, Paola L.
    MATEMATICHE, 2008, 63 (02): : 191 - 195
  • [30] Betti numbers of determinantal ideals
    Miro-Roig, Rosa M.
    JOURNAL OF ALGEBRA, 2007, 318 (02) : 653 - 668