Betti splitting via componentwise linear ideals

被引:8
|
作者
Bolognini, Davide [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
关键词
Betti numbers of monomial ideals; Componentwise linear ideals; Simplicial complexes; Fat points; MONOMIAL IDEALS; FAT POINTS; RESOLUTIONS; NUMBERS; MODULES; RINGS;
D O I
10.1016/j.jalgebra.2016.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A monomial ideal I admits a Betti splitting I = J + K if the Betti numbers of I can be determined in terms of the Betti numbers of the ideals J, K and J boolean AND K. Given a monomial ideal I, we prove that I = J + K is a Betti splitting of I, provided J and K are componentwise linear, generalizing a result of Francisco, Ha, and Van Tuyl. If I has a linear resolution, the converse also holds. We apply this result recursively to the Alexander dual of vertex-decomposable, shellable and constructible simplicial complexes. Moreover we determine the graded Betti numbers of the defining ideal of three general fat points in the projective space. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Componentwise linear ideals with minimal or maximal Betti numbers
    Herzog, Juergen
    Hibi, Takayuki
    Murai, Satoshi
    Takayama, Yukihide
    ARKIV FOR MATEMATIK, 2008, 46 (01): : 69 - 75
  • [2] Componentwise linear ideals
    Herzog, J
    Hibi, T
    NAGOYA MATHEMATICAL JOURNAL, 1999, 153 : 141 - 153
  • [3] Powers of Componentwise Linear Ideals
    Herzog, Juergen
    Hibi, Takayuki
    Ohsugi, Hidefumi
    COMBINATORIAL ASPECTS OF COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY: THE ABEL SYMPOSIUM 2009, 2011, 6 : 49 - +
  • [4] Face numbers of sequentially Cohen-Macaulay complexes and Betti numbers of componentwise linear ideals
    Adiprasito, Karim A.
    Bjorner, Anders
    Goodarzi, Afshin
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (12) : 3851 - 3865
  • [5] Ideals with componentwise linear powers
    Hibi, Takayuki
    Moradi, Somayeh
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (03): : 833 - 841
  • [6] Ideals with Linear Quotients and Componentwise Polymatroidal Ideals
    Bandari, Somayeh
    Qureshi, Ayesha Asloob
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
  • [7] Ideals with Linear Quotients and Componentwise Polymatroidal Ideals
    Somayeh Bandari
    Ayesha Asloob Qureshi
    Mediterranean Journal of Mathematics, 2023, 20
  • [8] The Lefschetz property for componentwise linear ideals and Gotzmann ideals
    Wiebe, A
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (12) : 4601 - 4611
  • [9] Integrally closed and componentwise linear ideals
    Aldo Conca
    Emanuela De Negri
    Maria Evelina Rossi
    Mathematische Zeitschrift, 2010, 265 : 715 - 734
  • [10] Integrally closed and componentwise linear ideals
    Conca, Aldo
    De Negri, Emanuela
    Rossi, Maria Evelina
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (03) : 715 - 734