Betti splitting via componentwise linear ideals

被引:8
作者
Bolognini, Davide [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
关键词
Betti numbers of monomial ideals; Componentwise linear ideals; Simplicial complexes; Fat points; MONOMIAL IDEALS; FAT POINTS; RESOLUTIONS; NUMBERS; MODULES; RINGS;
D O I
10.1016/j.jalgebra.2016.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A monomial ideal I admits a Betti splitting I = J + K if the Betti numbers of I can be determined in terms of the Betti numbers of the ideals J, K and J boolean AND K. Given a monomial ideal I, we prove that I = J + K is a Betti splitting of I, provided J and K are componentwise linear, generalizing a result of Francisco, Ha, and Van Tuyl. If I has a linear resolution, the converse also holds. We apply this result recursively to the Alexander dual of vertex-decomposable, shellable and constructible simplicial complexes. Moreover we determine the graded Betti numbers of the defining ideal of three general fat points in the projective space. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 25 条
[1]  
[Anonymous], MACAULAY2 SOFTWARE S
[2]  
Bolognini D., 2015, THESIS U STUDI GENOV
[3]   MINIMAL RESOLUTIONS OF SOME MONOMIAL IDEALS [J].
ELIAHOU, S ;
KERVAIRE, M .
JOURNAL OF ALGEBRA, 1990, 129 (01) :1-25
[4]  
Faridi S., 2014, SPRINGER P MATH STAT, V76
[5]   On the resolution of ideals of fat points [J].
Fatabbi, G .
JOURNAL OF ALGEBRA, 2001, 242 (01) :92-108
[6]   Resolutions of small sets of fat points [J].
Francisco, CA .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 203 (1-3) :220-236
[7]   Some families of componentwise linear monomial ideals [J].
Francisco, Christopher A. ;
Van Tuyl, Adam .
NAGOYA MATHEMATICAL JOURNAL, 2007, 187 :115-156
[8]   SPLITTINGS OF MONOMIAL IDEALS [J].
Francisco, Christopher A. ;
Ha, Huy Tai ;
Van Tuyl, Adam .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (10) :3271-3282
[9]   Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers [J].
Ha, Huy Tai ;
Van Tuyl, Adam .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 27 (02) :215-245
[10]   Splittable ideals and the resolutions of monomial ideals [J].
Ha, Huy Tai ;
Van Tuyl, Adam .
JOURNAL OF ALGEBRA, 2007, 309 (01) :405-425