The asymptotic number of labeled graphs with n vertices, q edges, and no isolated vertices

被引:11
作者
Bender, EA
Canfield, ER
McKay, BD
机构
[1] UNIV GEORGIA,DEPT COMP SCI,ATHENS,GA 30602
[2] AUSTRALIAN NATL UNIV,DEPT COMP SCI,CANBERRA,ACT 0200,AUSTRALIA
关键词
D O I
10.1006/jcta.1997.2798
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d(n, q) be the number of labeled graphs with n vertices, q less than or equal to N = ((n)(2)) edges. and no isolated vertices. Let x = q/n and k = 2q - n. We determine functions, w(k) similar to 1. a(x), and phi(x) such that d(n, q) similar to w(k)((N)(q)) e(n phi(x) + a(x)) uniformly for all n and q > n/2. (C) 1997 Academic Press.
引用
收藏
页码:124 / 150
页数:27
相关论文
共 6 条
[1]  
[Anonymous], 1990, RANDOM STRUCT ALGOR
[2]  
[Anonymous], 1979, Graph Theory: An Introductory Course
[3]  
ERDOS P, 1959, J PUBL MATH DEBRECCN, V6, P290
[4]  
Gill Williamson S., 1985, COMBINATORICS COMPUT
[5]  
McKay Brendan D, 1981, Congressus Numerantium, V33, P213
[6]   ASYMPTOTIC EVALUATION OF NUMBER OF LATIN RECTANGLES [J].
STEIN, CM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 25 (01) :38-49