Lyapunov criteria for uniform convergence of conditional distributions of absorbed Markov processes

被引:21
作者
Champagnat, Nicolas [1 ,2 ,3 ]
Villemonais, Denis [1 ,2 ,3 ]
机构
[1] Univ Lorraine, UMR 7502, IECL, Campus Sci,BP 70239, F-54506 Vandoeuvre Les Nancy, France
[2] CNRS, IECL, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[3] INRIA, TOSCA Team, F-54600 Villers Les Nancy, France
关键词
Stochastic Lotka-Volterra systems; Multidimensional birth and death process; Process absorbed on the boundary; Quasi-stationary distribution; Uniform exponential mixing property; Lyapunov function; QUASI-STATIONARY DISTRIBUTIONS; ONE-DIMENSIONAL DIFFUSIONS; EXPONENTIAL CONVERGENCE; STOCHASTIC-PROCESSES; MODELS;
D O I
10.1016/j.spa.2020.12.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the uniform convergence to quasi-stationarity of multidimensional processes absorbed when one of the coordinates vanishes. Our results cover competitive or weakly cooperative Lotka-Volterra birth and death processes and Feller diffusions with competitive Lotka-Volterra interaction. To this aim, we develop an original non-linear Lyapunov criterion involving two functions, which applies to general Markov processes. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 74
页数:24
相关论文
共 35 条
[1]  
[Anonymous], 2016, ARXIV E PRINTS
[2]  
[Anonymous], 2002, CAMBRIDGE STUDIES AD
[3]   APPROXIMATION OF STOCHASTIC PROCESSES BY NONEXPANSIVE FLOWS AND COMING DOWN FROM INFINITY [J].
Bansaye, Vincent .
ANNALS OF APPLIED PROBABILITY, 2019, 29 (04) :2374-2438
[4]  
Brezis H, 1996, Analyse Fonctionnelle: Thorie et Applications
[5]   Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction [J].
Cattiaux, Patrick ;
Meleard, Sylvie .
JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 60 (06) :797-829
[6]   QUASI-STATIONARY DISTRIBUTIONS AND DIFFUSION MODELS IN POPULATION DYNAMICS [J].
Cattiaux, Patrick ;
Collet, Pierre ;
Lambert, Amaury ;
Martinez, Servet ;
Meleard, Sylvie ;
San Martin, Jaime .
ANNALS OF PROBABILITY, 2009, 37 (05) :1926-1969
[7]   Unifying evolutionary dynamics:: From individual stochastic processes to macroscopic models [J].
Champagnat, N ;
Ferrière, R ;
Méléard, S .
THEORETICAL POPULATION BIOLOGY, 2006, 69 (03) :297-321
[8]  
Champagnat N., 2017, ARXIV171208092
[9]  
Champagnat N, 2008, PROG PROBAB, V59, P75
[10]   Criteria for Exponential Convergence to Quasi-Stationary Distributions and Applications to Multi-Dimensional Diffusions [J].
Champagnat, Nicolas ;
Coulibaly-Pasquier, Kolehe Abdoulaye ;
Villemonais, Denis .
SEMINAIRE DE PROBABILITES XLIX, 2018, 2215 :165-182