Meta-analysis of Complex Diseases at Gene Level with Generalized Functional Linear Models

被引:13
作者
Fan, Ruzong [1 ]
Wang, Yifan [1 ]
Chiu, Chi-yang [1 ]
Chen, Wei [2 ]
Ren, Haobo [3 ]
Li, Yun [4 ,5 ]
Boehnke, Michael [6 ]
Amos, Christopher I. [7 ]
Moore, Jason H. [8 ]
Xiong, Momiao [6 ]
机构
[1] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, Biostat & Bioinformat Branch, NIH, Bethesda, MD 20892 USA
[2] Univ Pittsburgh, Med Ctr, Div Pulm Med Allergy & Immunol, Pittsburgh, PA 15224 USA
[3] Regeneron Pharmaceut Inc, Basking Ridge, NJ 07920 USA
[4] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[5] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[6] Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA
[7] Dartmouth Med Sch, Dept Community & Family Med, Lebanon, NH 03756 USA
[8] Univ Penn, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
meta-analysis; rare variants; common variants; association mapping; complex traits; functional data analysis; GENOME-WIDE ASSOCIATION; QUANTITATIVE TRAITS; SUSCEPTIBILITY LOCI; RARE VARIANTS; COMMON;
D O I
10.1534/genetics.115.180869
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We developed generalized functional linear models (GFLMs) to perform a meta-analysis of multiple case-control studies to evaluate the relationship of genetic data to dichotomous traits adjusting for covariates. Unlike the previously developed meta-analysis for sequence kernel association tests (MetaSKATs), which are based on mixed-effect models to make the contributions of major gene loci random, GFLMs are fixed models; i.e., genetic effects of multiple genetic variants are fixed. Based on GFLMs, we developed chi-squared-distributed Rao's efficient score test and likelihood-ratio test (LRT) statistics to test for an association between a complex dichotomous trait and multiple genetic variants. We then performed extensive simulations to evaluate the empirical type I error rates and power performance of the proposed tests. The Rao's efficient score test statistics of GFLMs are very conservative and have higher power than MetaSKATs when some causal variants are rare and some are common. When the causal variants are all rare [i.e., minor allele frequencies (MAF) < 0.03], the Rao's efficient score test statistics have similar or slightly lower power than MetaSKATs. The LRT statistics generate accurate type I error rates for homogeneous genetic-effect models and may inflate type I error rates for heterogeneous genetic-effect models owing to the large numbers of degrees of freedom and have similar or slightly higher power than the Rao's efficient score test statistics. GFLMs were applied to analyze genetic data of 22 gene regions of type 2 diabetes data from a meta-analysis of eight European studies and detected significant association for 18 genes (P < 3.10 x 10(-6)), tentative association for 2 genes (HHEX and HMGA2; P approximate to 10(-5)), and no association for 2 genes, while MetaSKATs detected none. In addition, the traditional additive-effect model detects association at gene HHEX. GFLMs and related tests can analyze rare or common variants or a combination of the two and can be useful in whole-genome and whole-exome association studies.
引用
收藏
页码:457 / +
页数:27
相关论文
共 40 条
[1]   A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data:: Application to HLA in type 1 diabetes [J].
Cordell, HJ ;
Clayton, DG .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 70 (01) :124-141
[2]  
deBoor C., 1978, Applied Mathematical Sciences, Vfirst, DOI DOI 10.1007/978-1-4612-6333-3
[3]   Meta-analysis methods for genome-wide association studies and beyond [J].
Evangelou, Evangelos ;
Ioannidis, John P. A. .
NATURE REVIEWS GENETICS, 2013, 14 (06) :379-389
[4]  
Fan R. Z., 2016, GENET EPIDE IN PRESS
[5]   Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models [J].
Fan, Ruzong ;
Wang, Yifan ;
Boehnke, Michael ;
Chen, Wei ;
Li, Yun ;
Ren, Haobo ;
Lobach, Iryna ;
Xiong, Momiao .
GENETICS, 2015, 200 (04) :1089-+
[6]   Generalized Functional Linear Models for Gene-Based Case-Control Association Studies [J].
Fan, Ruzong ;
Wang, Yifan ;
Mills, James L. ;
Carter, Tonia C. ;
Lobach, Iryna ;
Wilson, Alexander F. ;
Bailey-Wilson, Joan E. ;
Weeks, Daniel E. ;
Xiong, Momiao .
GENETIC EPIDEMIOLOGY, 2014, 38 (07) :622-637
[7]   Functional Linear Models for Association Analysis of Quantitative Traits [J].
Fan, Ruzong ;
Wang, Yifan ;
Mills, James L. ;
Wilson, Alexander F. ;
Bailey-Wilson, Joan E. ;
Xiong, Momiao .
GENETIC EPIDEMIOLOGY, 2013, 37 (07) :726-742
[8]  
Ferraty F.Y. Romain., 2010, OXFORD HDB FUNCTIONA
[9]  
Fisher RA., 1918, T ROY SOC EDINBURGH, V52, P399, DOI [10.1017/S0080456800012163, DOI 10.1017/S0080456800012163]
[10]   A second generation human haplotype map of over 3.1 million SNPs [J].
Frazer, Kelly A. ;
Ballinger, Dennis G. ;
Cox, David R. ;
Hinds, David A. ;
Stuve, Laura L. ;
Gibbs, Richard A. ;
Belmont, John W. ;
Boudreau, Andrew ;
Hardenbol, Paul ;
Leal, Suzanne M. ;
Pasternak, Shiran ;
Wheeler, David A. ;
Willis, Thomas D. ;
Yu, Fuli ;
Yang, Huanming ;
Zeng, Changqing ;
Gao, Yang ;
Hu, Haoran ;
Hu, Weitao ;
Li, Chaohua ;
Lin, Wei ;
Liu, Siqi ;
Pan, Hao ;
Tang, Xiaoli ;
Wang, Jian ;
Wang, Wei ;
Yu, Jun ;
Zhang, Bo ;
Zhang, Qingrun ;
Zhao, Hongbin ;
Zhao, Hui ;
Zhou, Jun ;
Gabriel, Stacey B. ;
Barry, Rachel ;
Blumenstiel, Brendan ;
Camargo, Amy ;
Defelice, Matthew ;
Faggart, Maura ;
Goyette, Mary ;
Gupta, Supriya ;
Moore, Jamie ;
Nguyen, Huy ;
Onofrio, Robert C. ;
Parkin, Melissa ;
Roy, Jessica ;
Stahl, Erich ;
Winchester, Ellen ;
Ziaugra, Liuda ;
Altshuler, David ;
Shen, Yan .
NATURE, 2007, 449 (7164) :851-U3