On weighted centers for semidefinite programming

被引:6
作者
Sturm, JF [1 ]
Zhang, SZ [1 ]
机构
[1] Erasmus Univ, Inst Econometr, Rotterdam, Netherlands
关键词
semidefinite programming; symmetric primal-dual transformation; weighted center;
D O I
10.1016/S0377-2217(99)00299-4
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we generalize the notion of weighted centers to semidefinite programming. Our analysis fits in the nu-space framework, which is purely based on the symmetric primal-dual transformation and does not make use of barriers. Existence and scale invariance properties are proven for the weighted centers. Relations with other primal-dual maps are discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:391 / 407
页数:17
相关论文
共 50 条
  • [21] The volumetric barrier for semidefinite programming
    Anstreicher, KM
    MATHEMATICS OF OPERATIONS RESEARCH, 2000, 25 (03) : 365 - 380
  • [22] A robust algorithm for semidefinite programming
    Doan, Xuan Vinh
    Kruk, Serge
    Wolkowicz, Henry
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (4-5) : 667 - 693
  • [23] Semidefinite programming in combinatorial optimization
    Michel X. Goemans
    Mathematical Programming, 1997, 79 : 143 - 161
  • [24] Critical Multipliers in Semidefinite Programming
    Zhang, Tianyu
    Zhang, Liwei
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2020, 37 (04)
  • [25] Uncertainty Propagation with Semidefinite Programming
    Choi, Hyungjin
    Seiler, Peter J.
    Dhople, Sairaj V.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 5966 - 5971
  • [26] An ∈-sensitivity analysis for semidefinite programming
    Lim, S
    Lee, S
    Park, S
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2005, 164 (02) : 417 - 422
  • [27] Symmetricity of the solution of semidefinite programming
    Y. Kanno
    M. Ohsaki
    N. Katoh
    Structural and Multidisciplinary Optimization, 2002, 24 (3) : 225 - 232
  • [28] Statistical inference of semidefinite programming
    Shapiro, Alexander
    MATHEMATICAL PROGRAMMING, 2019, 174 (1-2) : 77 - 97
  • [29] Semidefinite programming for permutation codes
    Bogaerts, Mathieu
    Dukes, Peter
    DISCRETE MATHEMATICS, 2014, 326 : 34 - 43
  • [30] Semidefinite programming and combinatorial optimization
    Rendl, F
    APPLIED NUMERICAL MATHEMATICS, 1999, 29 (03) : 255 - 281