Optimizing the coordinated transcription of central xylose-metabolism genes in Saccharomyces cerevisiae

被引:6
作者
Zhang, Xinyuan [1 ]
Wang, Jingyu [2 ]
Zhang, Weiwei [1 ]
Hou, Jun yan [1 ]
Xiao, Wei [1 ]
Cao, Limin [1 ]
机构
[1] Capital Normal Univ, Coll Life Sci, 105 Xisanhuanbeilu, Beijing 100048, Peoples R China
[2] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
中国国家自然科学基金;
关键词
Saccharomyces cerevisiae; Xylose; Copy number variation; Two-stage transcriptional reprogramming; Expression balance; ETHANOL-PRODUCTION; CELLULOSIC ETHANOL; SUGAR TRANSPORTER; YEAST; EXPRESSION; FERMENTATION; OPTIMIZATION; PREFERENCE; EVOLUTION; PATHWAY;
D O I
10.1007/s00253-018-9172-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The efficient fermentation of xylose can improve biofuel production. We previously developed a two-stage transcriptional reprogramming (TSTR) strategy (including a glucose fermentation stage and a xylose fermentation stage) and demonstrated its application for the construction of Saccharomyces cerevisiae strains with efficient xylose utilization. In this study, we used these as initial strains to assess the effects of copy number variation (CNV) on optimal gene expression and rewiring the redox balance of the xylose utilization pathway. We obtained strains that contained several integrated copies of XYL1, XYL2, and XKS1 and showed increased ethanol yields. An examination of the individual and combined effects of CNVs of key genes and the redox balance pathway revealed that the TSTR strategy improves ethanol production efficiency. Furthermore, XYL1 or XYL2 overexpression was related to improved xylose utilization. These results showed that strains with faster growth and/or higher ethanol production produced more ethanol from xylose via the synthetic xylose-assimilation pathway. Accordingly, TSTR is an effective strategy to improve xylose metabolism in industrial yeast strains.
引用
收藏
页码:7207 / 7217
页数:11
相关论文
共 50 条
[21]   Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose [J].
Salusjärvi, L ;
Pitkänen, JP ;
Aristidou, A ;
Ruohonen, L ;
Penttilä, M .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2006, 128 (03) :237-261
[22]   Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture [J].
Pitkänen, JP ;
Aristidou, A ;
Salusjärvi, L ;
Ruohonen, L ;
Penttilä, M .
METABOLIC ENGINEERING, 2003, 5 (01) :16-31
[23]   Coordinated regulation of growth genes in Saccharomyces cerevisiae [J].
Slattery, Matthew G. ;
Heideman, Warren .
CELL CYCLE, 2007, 6 (10) :1210-1219
[24]   Protein acetylation regulates xylose metabolism during adaptation of Saccharomyces cerevisiae [J].
Tan, Yong-Shui ;
Wang, Li ;
Wang, Ying-Ying ;
He, Qi-En ;
Liu, Zhi-Hua ;
Zhu, Zhen ;
Song, Kai ;
Li, Bing-Zhi ;
Yuan, Ying-Jin .
BIOTECHNOLOGY FOR BIOFUELS, 2021, 14 (01)
[25]   A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism [J].
Solis-Escalante, Daniel ;
Kuijpers, Niels G. A. ;
Barrajon-Simancas, Nuria ;
van den Broek, Marcel ;
Pronk, Jack T. ;
Daran, Jean-Marc ;
Daran-Lapujade, Pascale .
EUKARYOTIC CELL, 2015, 14 (08) :804-816
[26]   Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae [J].
Leavitt, John M. ;
Tong, Alice ;
Tong, Joyce ;
Pattie, Jonathan ;
Alper, Hal S. .
BIOTECHNOLOGY JOURNAL, 2016, 11 (07) :866-876
[27]   Transcriptome changes in adaptive evolution of xylose-fermenting industrial Saccharomyces cerevisiae strains with δ-integration of different xylA genes [J].
Li, Yun-Cheng ;
Zeng, Wei-Yi ;
Gou, Min ;
Sun, Zhao-Yong ;
Xia, Zi-Yuan ;
Tang, Yue-Qin .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (20) :7741-7753
[28]   Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae [J].
Cadete, Raquel M. ;
de las Heras, Alejandro M. ;
Sandstrom, Anders G. ;
Ferreira, Carla ;
Girio, Francisco ;
Gorwa-Grauslund, Marie-Francoise ;
Rosa, Carlos A. ;
Fonseca, Cesar .
BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
[29]   Engineering the xylose metabolism of Saccharomyces cerevisiae for ethanol and single cell protein bioconversion [J].
Huang, Mengtian ;
Jin, Zhuocheng ;
Ni, Hong ;
Zhang, Peining ;
Li, Huanan ;
Liu, Jiashu ;
Weng, Chengcheng ;
Jiang, Zhengbing .
BIOMASS & BIOENERGY, 2024, 190
[30]   Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae [J].
Guo, Wei ;
Huang, Qiulan ;
Feng, Yuhui ;
Tan, Taicong ;
Niu, Suhao ;
Hou, Shaoli ;
Chen, Zhigang ;
Du, Zhi-Qiang ;
Shen, Yu ;
Fang, Xu .
BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (08) :2410-2419