Optimizing the coordinated transcription of central xylose-metabolism genes in Saccharomyces cerevisiae

被引:6
|
作者
Zhang, Xinyuan [1 ]
Wang, Jingyu [2 ]
Zhang, Weiwei [1 ]
Hou, Jun yan [1 ]
Xiao, Wei [1 ]
Cao, Limin [1 ]
机构
[1] Capital Normal Univ, Coll Life Sci, 105 Xisanhuanbeilu, Beijing 100048, Peoples R China
[2] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
中国国家自然科学基金;
关键词
Saccharomyces cerevisiae; Xylose; Copy number variation; Two-stage transcriptional reprogramming; Expression balance; ETHANOL-PRODUCTION; CELLULOSIC ETHANOL; SUGAR TRANSPORTER; YEAST; EXPRESSION; FERMENTATION; OPTIMIZATION; PREFERENCE; EVOLUTION; PATHWAY;
D O I
10.1007/s00253-018-9172-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The efficient fermentation of xylose can improve biofuel production. We previously developed a two-stage transcriptional reprogramming (TSTR) strategy (including a glucose fermentation stage and a xylose fermentation stage) and demonstrated its application for the construction of Saccharomyces cerevisiae strains with efficient xylose utilization. In this study, we used these as initial strains to assess the effects of copy number variation (CNV) on optimal gene expression and rewiring the redox balance of the xylose utilization pathway. We obtained strains that contained several integrated copies of XYL1, XYL2, and XKS1 and showed increased ethanol yields. An examination of the individual and combined effects of CNVs of key genes and the redox balance pathway revealed that the TSTR strategy improves ethanol production efficiency. Furthermore, XYL1 or XYL2 overexpression was related to improved xylose utilization. These results showed that strains with faster growth and/or higher ethanol production produced more ethanol from xylose via the synthetic xylose-assimilation pathway. Accordingly, TSTR is an effective strategy to improve xylose metabolism in industrial yeast strains.
引用
收藏
页码:7207 / 7217
页数:11
相关论文
共 50 条
  • [1] Optimizing the coordinated transcription of central xylose-metabolism genes in Saccharomyces cerevisiae
    Xinyuan Zhang
    Jingyu Wang
    Weiwei Zhang
    Jun yan Hou
    Wei Xiao
    Limin Cao
    Applied Microbiology and Biotechnology, 2018, 102 : 7207 - 7217
  • [2] Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae
    Nijland, Jeroen G.
    Shin, Hyun Yong
    Boender, Leonie G. M.
    de Waal, Paul P.
    Klaassen, Paul
    Driessen, Arnold J. M.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2017, 83 (11)
  • [3] Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae
    Kato, Hiroko
    Matsuda, Fumio
    Yamada, Ryosuke
    Nagata, Kento
    Shirai, Tomokazu
    Hasunuma, Tomohisa
    Kondo, Akihiko
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2013, 116 (03) : 333 - 336
  • [4] Deletion of NGG1 in a recombinant Saccharomyces cerevisiae improved xylose utilization and affected transcription of genes related to amino acid metabolism
    Cheng, Cheng
    Wang, Wei-Bin
    Sun, Meng-Lin
    Tang, Rui-Qi
    Bai, Long
    Alper, Hal S.
    Zhao, Xin-Qing
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [5] Efficient production of ginsenoside Rh2 from xylose by remodeling metabolism in Saccharomyces cerevisiae
    Zhang, Wanze
    Zhang, Jiale
    Zhao, Xiaomeng
    Zhang, Zhanwei
    He, Shifan
    Bian, Xueke
    Wang, Haibin
    Zhang, Chuanbo
    Lu, Wenyu
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [6] Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae
    Hou, Jin
    Vemuri, Goutham N.
    Bao, Xiaoming
    Olsson, Lisbeth
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 82 (05) : 909 - 919
  • [7] An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae
    Vargas, Beatriz de Oliveira
    dos Santos, Jade Ribeiro
    Pereira, Goncalo Amarante Guimaraes
    de Mello, Fellipe da Silveira Bezerra
    PEERJ, 2023, 11
  • [8] Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose
    Cao, Limin
    Tang, Xingliang
    Zhang, Xinyuan
    Zhang, Jingtao
    Tian, Xuelei
    Wang, Jingyu
    Xiong, Mingyong
    Xiao, Wei
    METABOLIC ENGINEERING, 2014, 24 : 150 - 159
  • [9] Fine-tuning of xylose metabolism in genetically engineered Saccharomyces cerevisiae by scattered integration of xylose assimilation genes
    Zuo, Qi
    Zhao, Xin-Qing
    Xiong, Liang
    Liu, Hai-Jun
    Xu, You-Hai
    Hu, Shi-Yang
    Ma, Zhong-Yi
    Zhu, Qing-Wei
    Bai, Feng-Wu
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 440 (02) : 241 - 244
  • [10] Simulating Extracellular Glucose Signals Enhances Xylose Metabolism in Recombinant Saccharomyces cerevisiae
    Wu, Meiling
    Li, Hongxing
    Wei, Shan
    Wu, Hongyu
    Wu, Xianwei
    Bao, Xiaoming
    Hou, Jin
    Liu, Weifeng
    Shen, Yu
    MICROORGANISMS, 2020, 8 (01)