Similarity-based machine learning methods for predicting drug-target interactions: a brief review

被引:296
作者
Ding, Hao [1 ,2 ]
Takigawa, Ichigaku [3 ,4 ]
Mamitsuka, Hiroshi [5 ,6 ]
Zhu, Shanfeng [1 ,2 ]
机构
[1] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[3] Hokkaido Univ, Grad Sch Informat Sci & Technol, Creat Res Inst, Sapporo, Hokkaido 060, Japan
[4] Hokkaido Univ, Grad Sch Informat Sci & Technol, Div Comp Sci, Sapporo, Hokkaido 060, Japan
[5] Kyoto Univ, Inst Chem Res, Kyoto 6068501, Japan
[6] Kyoto Univ, Sch Pharmaceut Sci, Kyoto 6068501, Japan
基金
日本学术振兴会;
关键词
drug discovery; drug-target interaction prediction; machine learning; drug similarity; target similarity; DIVERSITY-ORIENTED SYNTHESIS; LARGE-SCALE PREDICTION; PROTEIN INTERACTIONS; CHEMICAL-STRUCTURE; DISCOVERY; DATABASE; NETWORKS; TOOL; IDENTIFICATION; RESOURCES;
D O I
10.1093/bib/bbt056
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Computationally predicting drug-target interactions is useful to select possible drug (or target) candidates for further biochemical verification. We focus on machine learning-based approaches, particularly similarity-based methods that use drug and target similarities, which show relationships among drugs and those among targets, respectively. These two similarities represent two emerging concepts, the chemical space and the genomic space. Typically, the methods combine these two types of similarities to generate models for predicting new drug-target interactions. This process is also closely related to a lot of work in pharmacogenomics or chemical biology that attempt to understand the relationships between the chemical and genomic spaces. This background makes the similarity-based approaches attractive and promising. This article reviews the similarity-based machine learning methods for predicting drug-target interactions, which are state-of-the-art and have aroused great interest in bioinformatics. We describe each of these methods briefly, and empirically compare these methods under a uniform experimental setting to explore their advantages and limitations.
引用
收藏
页码:734 / 747
页数:14
相关论文
共 68 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]  
Ballesteros J, 2001, Curr Opin Drug Discov Devel, V4, P561
[3]   Supervised reconstruction of biological networks with local models [J].
Bleakley, Kevin ;
Biau, Gerard ;
Vert, Jean-Philippe .
BIOINFORMATICS, 2007, 23 (13) :I57-I65
[4]   Supervised prediction of drug-target interactions using bipartite local models [J].
Bleakley, Kevin ;
Yamanishi, Yoshihiro .
BIOINFORMATICS, 2009, 25 (18) :2397-2403
[5]   The BioGRID interaction database:: 2008 update [J].
Breitkreutz, Bobby-Joe ;
Stark, Chris ;
Reguly, Teresa ;
Boucher, Lorrie ;
Breitkreutz, Ashton ;
Livstone, Michael ;
Oughtred, Rose ;
Lackner, Daniel H. ;
Bahler, Jurg ;
Wood, Valerie ;
Dolinski, Kara ;
Tyers, Mike .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D637-D640
[6]   The European Bioinformatics Institute's data resources [J].
Brooksbank, Catherine ;
Cameron, Graham ;
Thornton, Janet .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D17-D25
[7]   Drug target identification using side-effect similarity [J].
Campillos, Monica ;
Kuhn, Michael ;
Gavin, Anne-Claude ;
Jensen, Lars Juhl ;
Bork, Peer .
SCIENCE, 2008, 321 (5886) :263-266
[8]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[9]   Structure-based maximal affinity model predicts small-molecule druggability [J].
Cheng, Alan C. ;
Coleman, Ryan G. ;
Smyth, Kathleen T. ;
Cao, Qing ;
Soulard, Patricia ;
Caffrey, Daniel R. ;
Salzberg, Anna C. ;
Huang, Enoch S. .
NATURE BIOTECHNOLOGY, 2007, 25 (01) :71-75
[10]   Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference [J].
Cheng, Feixiong ;
Liu, Chuang ;
Jiang, Jing ;
Lu, Weiqiang ;
Li, Weihua ;
Liu, Guixia ;
Zhou, Weixing ;
Huang, Jin ;
Tang, Yun .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (05)