Towards a non-abelian electric-magnetic symmetry: the skeleton group

被引:1
作者
Kampmeijer, L. [1 ]
Bais, F. A. [1 ,2 ]
Schroers, B. J. [3 ,4 ]
Slingerland, J. K. [5 ,6 ]
机构
[1] Univ Amsterdam, Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands
[2] Santa Fe Inst, Santa Fe, NM 87501 USA
[3] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[5] Dublin Inst Adv Studies, Sch Theoret Phys, Dublin 4, Ireland
[6] Natl Univ Ireland, Dept Math Phys, Maynooth, Kildare, Ireland
关键词
Duality in Gauge Field Theories; Solitons Monopoles and Instantons; Gauge Symmetry; Confinement; GAUGE-THEORIES; S-DUALITY; GLOBAL COLOR; MONOPOLES; CHARGE; CONFINEMENT; QUANTIZATION; CONSERVATION; CHROMODYONS; ALGEBRA;
D O I
10.1007/JHEP01(2010)095
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose an electric-magnetic symmetry group in non-abelian gauge theory, which we call the skeleton group. We work in the context of non-abelian unbroken gauge symmetry, and provide evidence for our proposal by relating the representation theory of the skeleton group to the labelling and fusion rules of charge sectors. We show that the labels of electric, magnetic and dyonic sectors in non-abelian Yang-Mills theory can be interpreted in terms of irreducible representations of the skeleton group. Decomposing tensor products of these representations thus gives a set of fusion rules which contain information about the full fusion rules of these charge sectors. We demonstrate consistency of the skeleton's fusion rules with the known fusion rules of the purely electric and purely magnetic magnetic sectors, and extract new predictions for the fusion rules of dyonic sectors in particular cases. We also implement S-duality and show that the fusion rules obtained from the skeleton group commute with S-duality.
引用
收藏
页数:32
相关论文
共 39 条
[1]   ARE THERE CHROMODYONS [J].
ABOUELSAOOD, A .
NUCLEAR PHYSICS B, 1983, 226 (02) :309-338
[2]   CHROMODYONS AND EQUIVARIANT GAUGE TRANSFORMATIONS [J].
ABOUELSAOOD, A .
PHYSICS LETTERS B, 1983, 125 (06) :467-469
[3]   ZERO MODES OF NON-ABELIAN VORTICES [J].
ALFORD, M ;
BENSON, K ;
COLEMAN, S ;
MARCHRUSSELL, J ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1991, 349 (02) :414-438
[4]  
[Anonymous], CRM SER MATH PHYS
[5]  
[Anonymous], HEPTH0612119
[6]  
[Anonymous], 1966, I HAUTES ETUDES SCI, DOI DOI 10.1007/BF02684801
[7]   Broken quantum symmetry and confinement phases in planar physics [J].
Bais, FA ;
Schroers, BJ ;
Slingerland, JK .
PHYSICAL REVIEW LETTERS, 2002, 89 (18)
[8]   Quantisation of monopoles with non-abelian magnetic charge [J].
Bais, FA ;
Schroers, BJ .
NUCLEAR PHYSICS B, 1998, 512 (1-2) :250-294
[9]   NON-ABELIAN MONOPOLES BREAK COLOR .2. FIELD-THEORY AND QUANTUM-MECHANICS [J].
BALACHANDRAN, AP ;
MARMO, G ;
MUKUNDA, N ;
NILSSON, JS ;
SUDARSHAN, ECG ;
ZACCARIA, F .
PHYSICAL REVIEW D, 1984, 29 (12) :2936-2943
[10]  
Barut A O., 1986, Theory of Group Representations and Applications