Optimal Multiplexing of Discrete-Time Constrained Control Systems on Matrix Lie Groups

被引:0
作者
Maheshwari, Chinmay [1 ]
Srikant, Sukumar [2 ]
Chatterjee, Debasish [2 ]
机构
[1] Univ Calif Berkeley, EECS, Berkeley, CA 94720 USA
[2] Indian Inst Technol, Syst & Control Engn, Mumbai 400076, Maharashtra, India
关键词
Multiplexing; Optimal control; Aerospace electronics; Satellites; Job shop scheduling; Optimal scheduling; Constrained control; control multiplexing; differential geometry; discrete-time pontryagin maximum principle;
D O I
10.1109/TAC.2020.3000979
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we study a constrained optimal control problem for an ensemble of control systems in a centralized setting. Each system evolves on a matrix Lie group, and must satisfy given state and control action constraints pointwise in time. In addition, the controller must be shared between the plants in the sense that at any time instant the control signal may be sent to only one plant while minimizing a given objective function. We provide first-order necessary conditions for optimality in the form of a Pontryagin maximum principle for such optimal control problems.
引用
收藏
页码:1895 / 1901
页数:7
相关论文
共 23 条
[1]   A simple proof of the discrete time geometric Pontryagin maximum principle on smooth manifolds [J].
Assif, Mishal P. K. ;
Chatterjee, Debasish ;
Banavar, Ravi .
AUTOMATICA, 2020, 114
[2]  
Boltyanskii V. G., 1975, RUSS MATH SURV, V30, P3, DOI DOI 10.1070/RM1975V030N03ABEH001411
[3]   Controlling multiple microrobots: recent progress and future challenges [J].
Chowdhury S. ;
Jing W. ;
Cappelleri D.J. .
Journal of Micro-Bio Robotics, 2015, 10 (1-4) :1-11
[4]   Optimal Control and Scheduling of Networked Control Systems [J].
Goerges, Daniel ;
Izak, Michal ;
Liu, Steven .
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, :5839-5844
[5]  
Gorges D, 2007, P 46 IEEE C DEC CONT, P1070
[6]   A Collision-free Communication Scheduling for Nonlinear Model Predictive Control [J].
Hashimoto, Kazumune ;
Adachi, Shuichi ;
Dimarogonas, Dimos V. .
IFAC PAPERSONLINE, 2017, 50 (01) :8939-8944
[7]  
Hiriart-Urruty J. B., 2001, Fundamentals of Convex Analysis
[8]  
Kotpalliwar S, 2018, IEEE DECIS CONTR P, P43, DOI 10.1109/CDC.2018.8618711
[9]   Optimal multiplexing of sparse controllers for linear systems [J].
Kumar, Yogesh ;
Srikant, Sukumar ;
Chatterjee, Debasish .
AUTOMATICA, 2019, 106 :134-142
[10]  
Maheshwari Chinmay, 2019, ARXIV190208404