Densification by Compaction as an Effective Low-Cost Method to Attain a High Areal Lithium Storage Capacity in a CNT@Co3O4 Sponge

被引:73
作者
Chen, Yijun [1 ]
Wang, Yunsong [1 ]
Wang, Zhipeng [1 ]
Zou, Mingchu [1 ]
Zhang, Hui [1 ]
Zhao, Wenqi [1 ,2 ]
Yousaf, Muhammad [1 ]
Yang, Liusi [1 ]
Cao, Anyuan [1 ]
Han, Ray P. S. [1 ]
机构
[1] Peking Univ, Dept Mat Sci & Engn, Coll Engn, Beijing 100871, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150080, Heilongjiang, Peoples R China
基金
国家重点研发计划;
关键词
areal capacity; areal mass loading; carbon nanotube sponges; Co3O4; lithium ion batteries; ION BATTERY ANODE; SUPERIOR PERFORMANCE; CO3O4; NANOFIBERS; ELECTRODE; COMPOSITE; MASS; ARCHITECTURES; NANOSHEETS; MATRIX;
D O I
10.1002/aenm.201702981
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Achieving a high areal capacity is essential for the transfer of outstanding laboratory electrode results to commercial applications and also to ensure there exists a capacity matched cathode and anode for a properly tuned battery. Despite intensive efforts, most electrode materials exhibit areal capacities lower than that of the graphite anodes (4 mA h cm(-2)). An effective and low-cost approach is reported to attain a high areal capacity via an intense densification by compacting a porous carbon nanotube sponge grafted with Co3O4 nanoparticles. The hybrid sponge can be compacted to a large degree (up to a tenfold densification) while still keeping its structural integrity and the 3D porous network. This method allows achieving a mass loading of up -to 14.3 mg cm(-2) and an areal capacity of 12 mA h cm(-2) (at a current density of 200 mA g(-1)) together with a gravimetric capacity of >800 mA h g(-1). This densification by compaction approach offers an effective and low-cost strategy to develop high mass loading and areal capacity electrodes for practical energy storage systems.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Development of Areal Capacity of Si-O-C Composites as Anode for Lithium Secondary Batteries Using 3D-Structured Carbon Paper as a Current Collector [J].
Ahn, Seongki ;
Jeong, Moongook ;
Miyamoto, Koki ;
Yokoshima, Tokihiko ;
Nara, Hiroki ;
Momma, Toshiyuki ;
Osaka, Tetsuya .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :A355-A359
[2]   Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes [J].
Aravindan, Vanchiappan ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
ADVANCED ENERGY MATERIALS, 2015, 5 (13)
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]  
Billaud J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.97, 10.1038/NENERGY.2016.97]
[5]   Microwave-assisted Synthesis of Mesoporous Co3O4 Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions [J].
Chen, Shuangqiang ;
Zhao, Yufei ;
Sun, Bing ;
Ao, Zhimin ;
Xie, Xiuqiang ;
Wei, Yiying ;
Wang, Guoxiu .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (05) :3306-3313
[6]   Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage [J].
Chen, Yu Ming ;
Yu, Le ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (20) :5990-5993
[7]   Synthesis of ZnSnO3 mesocrystals from regular cube-like to sheet-like structures and their comparative electrochemical properties in Li-ion batteries [J].
Chen, Yuejiao ;
Qu, Baihua ;
Mei, Lin ;
Lei, Danni ;
Chen, Libao ;
Li, Qiuhong ;
Wang, Taihong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (48) :25373-25379
[8]   High-Areal-Capacity Silicon Electrodes with Low-Cost Silicon Particles Based on Spatial Control of Self-Healing Binder [J].
Chen, Zheng ;
Wang, Chao ;
Lopez, Jeffrey ;
Lu, Zhenda ;
Cui, Yi ;
Bao, Zhenan .
ADVANCED ENERGY MATERIALS, 2015, 5 (08)
[9]   Atomic Layer-by-Layer Co3O4/Graphene Composite for High Performance Lithium-Ion Batteries [J].
Dou, Yuhai ;
Xu, Jiantie ;
Ruan, Boyang ;
Liu, Qiannan ;
Pan, Yuede ;
Sun, Ziqi ;
Dou, Shi Xue .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[10]   Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes [J].
Gallagher, Kevin G. ;
Trask, Stephen E. ;
Bauer, Christoph ;
Woehrle, Thomas ;
Lux, Simon F. ;
Tschech, Matthias ;
Lamp, Peter ;
Polzin, Bryant J. ;
Ha, Seungbum ;
Long, Brandon ;
Wu, Qingliu ;
Lu, Wenquan ;
Dees, Dennis W. ;
Jansen, Andrew N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) :A138-A149