Models of Higher Order

被引:184
作者
Gazzola, Filippo [1 ]
Grunau, Hans-Christoph [3 ]
Sweers, Guido [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[3] Otto VonGuericke Univ Magdegurg, Inst Anal & Numer, D-39016 Magdeburg, Germany
来源
POLYHARMONIC BOUNDARY VALUE PROBLEMS: POSITIVITY PRESERVING AND NONLINEAR HIGHER ORDER ELLIPTIC EQUATIONS IN BOUNDED DOMAINS | 2010年 / 1991卷
关键词
BOUNDARY-VALUE-PROBLEMS; SEMILINEAR ELLIPTIC-EQUATIONS; SUPERCRITICAL BIHARMONIC-EQUATIONS; CONFORMALLY CONTRACTILE DOMAINS; POSITIVITY PRESERVING PROPERTY; MULTIPLE CRITICAL DIMENSIONS; EVENTUAL LOCAL POSITIVITY; POLYGON-CIRCLE PARADOX; PANEITZ-TYPE OPERATORS; VON-KARMANS EQUATIONS;
D O I
10.1007/978-3-642-12245-3_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / +
页数:42
相关论文
共 432 条
[41]  
[Anonymous], 1923, Bayer. Akad. Wiss. Munchen, Math.-Phys. Kl.
[42]  
[Anonymous], 1951, Pacific J. Math.
[43]  
[Anonymous], LINEARE FUNKTIONALAN
[44]  
[Anonymous], 1998, HIST MATH
[45]   A semilinear fourth order elliptic problem with exponential nonlinearity [J].
Arioli, G ;
Gazzola, F ;
Grunau, HC ;
Mitidieri, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (04) :1226-1258
[46]   The second bifurcation branch for radial solutions of the Brezis-Nirenberg problem in dimension four [J].
Arioli, Gianni ;
Gazzola, Filippo ;
Grunau, Hans-Christoph ;
Sassone, Edoardo .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2) :69-90
[47]   Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity [J].
Arioli, Gianni ;
Gazzola, Filippo ;
Grunau, Hans-Christoph .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (02) :743-770
[48]  
Aronszajn N., 1983, Oxford Mathematical Monographs
[49]   On the isoperimetric inequality for the buckling of a clamped plate [J].
S. Ashbaugh ;
Dorin Bucur .
Zeitschrift für angewandte Mathematik und Physik ZAMP, 2003, 54 (5) :756-770
[50]   ON RAYLEIGHS CONJECTURE FOR THE CLAMPED PLATE AND ITS GENERALIZATION TO 3 DIMENSIONS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (01) :1-17