A bio-inspired evolutionary algorithm: allostatic optimisation

被引:12
|
作者
Osuna-Enciso, Valentin [1 ]
Cuevas, Erik [2 ]
Oliva, Diego [3 ]
Sossa, Humberto [4 ]
Perez-Cisneros, Marco [1 ]
机构
[1] Univ Guadalajara, Centro Univ Tonala, Div Ciencias, Guadalajara 44430, Jalisco, Mexico
[2] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Div Elect, Guadalajara 44430, Jalisco, Mexico
[3] Univ Complutense, Fac Informat, Dept Ingn Software & Inteligencia Artificial, E-28040 Madrid, Spain
[4] Inst Politecn Nacl, CIC, Ave Juan de Dios Batiz S-N, Mexico City, DF, Mexico
关键词
evolutionary algorithms; optimisation; bio-inspired computation; allostasis; GLOBAL OPTIMIZATION; MODEL;
D O I
10.1504/IJBIC.2016.076633
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the last decade, several bio-inspired algorithms have emerged for solving complex optimisation problems. Since the performance of these algorithms present a suboptimal behaviour, a tremendous amount of research has been devoted to find new and better optimisation methods. On the other hand, allostasis is a medical term recently coined which explains how the configuration of the internal state (IS) in different organs allows reaching stability when an unbalance condition is presented. In this paper, a novel biologically-inspired algorithm called allostatic optimisation (AO) is proposed for solving optimisation problems. In AO, individuals emulate the IS of different organs. In the approach, each individual is improved by using numerical operators based on the biological principles of the allostasis mechanism. The proposed method has been compared to other well-known optimisation algorithms. The results show good performance of the proposed method when searching for a global optimum of several benchmark functions.
引用
收藏
页码:154 / 169
页数:16
相关论文
共 50 条
  • [1] Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems
    Wang, Gai-Ge
    Deb, Suash
    Coelho, Leandro dos Santos
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2018, 12 (01) : 1 - 22
  • [2] A new bio-inspired optimisation algorithm: Bird Swarm Algorithm
    Meng, Xian-Bing
    Gao, X. Z.
    Lu, Lihua
    Liu, Yu
    Zhang, Hengzhen
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2016, 28 (04) : 673 - 687
  • [3] Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm for global optimisation problems
    Wang G.-G.
    Deb S.
    Dos Santos Coelho L.
    Wang, Gai-Ge (gaigewang@163.com), 2018, Inderscience Enterprises Ltd. (12) : 1 - 22
  • [4] Parameter Adjustment of a Bio-Inspired Coordination Model for Swarm Robotics Using Evolutionary Optimisation
    Tinoco, Claudiney R.
    Vizzari, Giuseppe
    Oliveira, Gina M. B.
    CELLULAR AUTOMATA, ACRI 2020, 2021, 12599 : 146 - 155
  • [5] On Easiest Functions for Mutation Operators in Bio-Inspired Optimisation
    Dogan Corus
    Jun He
    Thomas Jansen
    Pietro S. Oliveto
    Dirk Sudholt
    Christine Zarges
    Algorithmica, 2017, 78 : 714 - 740
  • [6] The great salmon run: a novel bio-inspired algorithm for artificial system design and optimisation
    Mozaffari, Ahmad
    Fathi, Alireza
    Behzadipour, Saeed
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2012, 4 (05) : 286 - 301
  • [7] On Easiest Functions for Mutation Operators in Bio-Inspired Optimisation
    Corus, Dogan
    He, Jun
    Jansen, Thomas
    Oliveto, Pietro S.
    Sudholt, Dirk
    Zarges, Christine
    ALGORITHMICA, 2017, 78 (02) : 714 - 740
  • [8] Viral systems:: A new bio-inspired optimisation approach
    Cortes, Pablo
    Garcia, Jose M.
    Munuzuri, Jesus
    Onieva, Luis
    COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (09) : 2840 - 2860
  • [9] A bio-inspired multisensory stochastic integration algorithm
    Porras, Alex
    Llinas, Rodolfo R.
    NEUROCOMPUTING, 2015, 151 : 11 - 33
  • [10] Bio-inspired optimisation algorithms in medical image segmentation: a review
    Zhang, Tian
    Zhou, Ping
    Zhang, Shenghan
    Cheng, Shi
    Ma, Lianbo
    Jiang, Huiyan
    Yao, Yu-Dong
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2024, 24 (02) : 65 - 79