Gram-Schmidt orthogonalization of the Zernike polynomials on apertures of arbitrary shape

被引:48
作者
Upton, R [1 ]
Ellerbroek, B [1 ]
机构
[1] Assoc Univ Res Astron Inc, New Initiat Off, Tucson, AZ 85721 USA
关键词
Aberrations - Algebra - Functions - Interferometry - Linearization - Matrix algebra - Mirrors - Vectors;
D O I
10.1364/OL.29.002840
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An orthonormal hexagonal Zernike basis set is generated from circular Zernike polynomials apodized by a hexagonal mask by use of the Gram-Schmidt orthogonalization technique. Results for the first 15 hexagonal Zernike polynomials are shown. The Gram-Schmidt orthogonalization technique presented can be extended to both apertures of arbitrary shape and other basis functions. (C) 2004 Optical Society of America.
引用
收藏
页码:2840 / 2842
页数:3
相关论文
共 8 条
[1]  
[Anonymous], OPTICAL IMAGING AB 2
[2]  
BORN M, 1993, PRINCIPLES OPTICS, P464
[3]  
DUDLEY DG, 1994, MATH FDN ELECTROMAGN, P16
[5]  
MALACARA D, 1992, OPTICAL SHOP TESTING, P480
[6]   ZERNIKE POLYNOMIALS AND ATMOSPHERIC-TURBULENCE [J].
NOLL, RJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (03) :207-211
[7]  
STRANG G, 1988, LINEAR ALGEBRA ITS A, P166
[8]   GRAM-SCHMIDT ORTHONORMALIZATION OF ZERNIKE POLYNOMIALS FOR GENERAL APERTURE SHAPES [J].
SWANTHNER, W ;
CHOW, WW .
APPLIED OPTICS, 1994, 33 (10) :1832-1837