Multiscale Modeling of Single-Phase Multicomponent Transport in the Cathode Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

被引:19
作者
Rama, Pratap [1 ]
Liu, Yu [1 ]
Chen, Rui [1 ]
Ostadi, Hossein [2 ]
Jiang, Kyle [2 ]
Gao, Yuan [3 ]
Zhang, Xiaoxian [3 ]
Fisher, Rosemary
Jeschke, Michael
机构
[1] Univ Loughborough, Dept Aeronaut & Automot Engn, Loughborough LE11 3TU, Leics, England
[2] Univ Birmingham, Dept Mech Engn, Birmingham B15 2TT, W Midlands, England
[3] Univ Liverpool, Dept Engn, Liverpool L69 3GQ, Merseyside, England
关键词
LATTICE BOLTZMANN MODEL; WATER MANAGEMENT; FLOW;
D O I
10.1021/ef100190c
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This research reports a feasibility study into multiscale polymer electrolyte fuel cell (PEFC) modeling through the simulation of macroscopic flow in the multilayered cell via one-dimensional (1D) electrochemical modeling, and the simulation of microscopic flow in the cathode gas diffusion layer (GDL) via three-dimensional (3D) single-phase multicomponent lattice Boltzmann (SPMC-LB) modeling. The heterogeneous porous geometry of the carbon-paper GDL is digitally reconstructed for the SPMC-LB model using X-ray computer microtomography. Boundary conditions at the channel and catalyst layer interfaces for the SPMC-LB simulations such as specie partial pressures and through-plane flowrates are determined using the validated ID electrochemical model, which is based on the general transport equation (GTE) and volume-averaged structural properties of the GDL. The calculated pressure profiles from the two models are cross-validated to verify the SPMC-LB technique. The simulations reveal a maximum difference of 2.4% between the thickness-averaged pressures calculated by the two techniques, which is attributable to the actual heterogeneity of the porous GDL structure.
引用
收藏
页码:3130 / 3143
页数:14
相关论文
共 32 条
  • [1] Lattice Boltzmann model for the simulation of multicomponent mixtures
    Arcidiacono, S.
    Karlin, I. V.
    Mantzaras, J.
    Frouzakis, C. E.
    [J]. PHYSICAL REVIEW E, 2007, 76 (04):
  • [2] BECKER J, 2007, J FUEL CELL SCI TECH, V5, P75
  • [3] Water management in PEM fuel cells
    Berg, P
    Promislow, K
    St Pierre, J
    Stumper, J
    Wetton, B
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (03) : A341 - A353
  • [4] BERGISSON E, 2005, J ELECTROCHEM SOC, V152, pA1021
  • [5] A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL
    BERNARDI, DM
    VERBRUGGE, MW
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) : 2477 - 2491
  • [6] Lattice Boltzmann model for multi-component mass transfer in a solid oxide fuel cell anode with heterogeneous internal reformation and electrochemistry
    Chiu, W. K. S.
    Joshi, A. S.
    Grew, K. N.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 171 : 159 - 165
  • [7] WATER AND THERMAL MANAGEMENT IN SOLID-POLYMER-ELECTROLYTE FUEL-CELLS
    FULLER, TF
    NEWMAN, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (05) : 1218 - 1225
  • [8] Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques
    Hontañón, E
    Escudero, MJ
    Bautista, C
    García-Ybarra, PL
    Daza, L
    [J]. JOURNAL OF POWER SOURCES, 2000, 86 (1-2) : 363 - 368
  • [9] Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields
    Hu, GL
    Fan, JR
    Chen, S
    Liu, YJ
    Cen, KF
    [J]. JOURNAL OF POWER SOURCES, 2004, 136 (01) : 1 - 9
  • [10] A phenomenological model of water transport in a proton exchange membrane fuel cell
    Janssen, GJM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (12) : A1313 - A1323