Additive local invertibility preservers

被引:3
作者
Bendaoud, M. [1 ]
Jabbar, M. [1 ]
Sarih, M. [2 ]
机构
[1] Moulay Ismail Univ, Dept Math, Al Mansour, Meknes, Morocco
[2] Fac Sci, Dept Math, Zitoune, Meknes, Morocco
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2014年 / 85卷 / 3-4期
关键词
preserver problems; local spectrum; inner local spectral radius; single-valued extension property; LINEAR-MAPS; SPECTRUM;
D O I
10.5486/PMD.2014.6073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L(X) be the algebra of all bounded linear operators on a complex Banach space X, and for a nonzero vector x is an element of X and T is an element of L(X), let sigma(T)(x) denote the local spectrum of T at x. We characterize additive surjective maps phi on L(X) which satisfy 0 is an element of sigma(phi(T))(x) if and only if 0 is an element of sigma(phi(T))(x) for every x is an element of X and T is an element of L(X). Extensions of this result to the case of different Banach spaces are also established. As application, additive maps from L(X) onto itself that preserve the inner local spectral radius zero of operators are classified.
引用
收藏
页码:467 / 480
页数:14
相关论文
共 21 条
  • [1] Aczel J., 1989, ENCY MATH APPL
  • [2] Aiena P., 2004, Fredholm and Local Spectral Theory, with Application to Multipliers
  • [3] Aupetit B., 1991, A Primer on Spectral Theory
  • [4] Maps on matrices preserving local spectra
    Bendaoud, M.
    Douimi, M.
    Sarih, M.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (07) : 871 - 880
  • [5] SUBJECTIVE LINEAR MAPS PRESERVING CERTAIN SPECTRAL RADII
    Bendaoud, M.
    Sarih, M.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (03) : 727 - 735
  • [6] Bendaoud M, 2011, MATH BOHEM, V136, P81
  • [7] Additive local spectrum compressors
    Bendaoud, M.
    Sarih, M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) : 1473 - 1478
  • [8] Bendaoud M., 2014, OPER THEO ADV APPL, V236, P95
  • [9] Bendaoud M., 2014, LIN MULTILINEAR ALG
  • [10] Preservers of local spectra of matrix sums
    Bendaoud, Mohamed
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2500 - 2507