Rational lines on cubic hypersurfaces

被引:1
|
作者
Brandes, Julia [1 ,2 ]
Dietmann, Rainer [3 ]
机构
[1] Chalmers Inst Technol, Math Sci, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, S-41296 Gothenburg, Sweden
[3] Univ London, Dept Math, Royal Holloway, Egham TW20 0EX, Surrey, England
基金
瑞典研究理事会; 美国国家科学基金会;
关键词
11D72; 14G05; 11E76; 11D88; 14J70; FORMS; PAIRS;
D O I
10.1017/S0305004120000079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any smooth projective cubic hypersurface of dimension at least 29 over the rationals contains a rational line. A variation of our methods provides a similar result over p-adic fields. In both cases, we improve on previous results due to the second author and Wooley. We include an appendix in which we highlight some slight modifications to a recent result of Papanikolopoulos and Siksek. It follows that the set of rational points on smooth projective cubic hypersurfaces of dimension at least 29 is generated via secant and tangent constructions from just a single point.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 50 条
  • [31] Cubic tessellations of the didicosm
    Hubard, Isabel
    Mixer, Mark
    Pellicer, Daniel
    Weiss, Asia Ivic
    ADVANCES IN GEOMETRY, 2014, 14 (02) : 299 - 318
  • [32] Sectional curvatures of ruled real hypersurfaces in a complex hyperbolic space
    Maeda, Sadahiro
    Tanabe, Hiromasa
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 51 : 1 - 8
  • [33] LP harmonic 1-forms on hypersurfaces with finite index
    Chao, Xiaoli
    Bin Shen
    Zhang, Miaomiao
    GLASGOW MATHEMATICAL JOURNAL, 2023, 65 (02) : 310 - 323
  • [34] Normal crossing properties of complex hypersurfaces via logarithmic residues
    Granger, Michel
    Schulze, Mathias
    COMPOSITIO MATHEMATICA, 2014, 150 (09) : 1607 - 1622
  • [35] LAGRANGIAN FIBRATIONS ON BLOWUPS OF TORIC VARIETIES AND MIRROR SYMMETRY FOR HYPERSURFACES
    Abouzaid, Mohammed
    Auroux, Denis
    Katzarkov, Ludmil
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2016, 123 (01): : 199 - 282
  • [36] Anisotropic cubic curvature couplings
    Bailey, Quentin G.
    PHYSICAL REVIEW D, 2016, 94 (06)
  • [37] On disjoint matchings in cubic graphs
    Mkrtchyan, Vahan V.
    Petrosyan, Samvel S.
    Vardanyan, Gagik N.
    DISCRETE MATHEMATICS, 2010, 310 (10-11) : 1588 - 1613
  • [38] Orders in cubic number fields
    Lettl, Guenter
    Prabpayak, Chanwit
    JOURNAL OF NUMBER THEORY, 2016, 166 : 415 - 423
  • [39] On the saturation number for cubic surfaces
    Wang, Yuchao
    JOURNAL OF NUMBER THEORY, 2015, 156 : 52 - 74
  • [40] Classification of homogeneous hypersurfaces in some noncompact symmetric spaces of rank two
    Solonenko, Ivan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (06) : 2915 - 2946