Rational lines on cubic hypersurfaces

被引:1
|
作者
Brandes, Julia [1 ,2 ]
Dietmann, Rainer [3 ]
机构
[1] Chalmers Inst Technol, Math Sci, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, S-41296 Gothenburg, Sweden
[3] Univ London, Dept Math, Royal Holloway, Egham TW20 0EX, Surrey, England
基金
瑞典研究理事会; 美国国家科学基金会;
关键词
11D72; 14G05; 11E76; 11D88; 14J70; FORMS; PAIRS;
D O I
10.1017/S0305004120000079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any smooth projective cubic hypersurface of dimension at least 29 over the rationals contains a rational line. A variation of our methods provides a similar result over p-adic fields. In both cases, we improve on previous results due to the second author and Wooley. We include an appendix in which we highlight some slight modifications to a recent result of Papanikolopoulos and Siksek. It follows that the set of rational points on smooth projective cubic hypersurfaces of dimension at least 29 is generated via secant and tangent constructions from just a single point.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 50 条
  • [1] Rational points on a class of cubic hypersurfaces
    Jiang, Yujiao
    Wen, Tingting
    Zhao, Wenjia
    FORUM MATHEMATICUM, 2024,
  • [2] Manin's Conjecture for a Class of Singular Cubic Hypersurfaces
    Liu, Jianya
    Wu, Jie
    Zhao, Yongqiang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (07) : 2008 - 2043
  • [3] Manin's conjecture for a class of singular cubic hypersurfaces
    Zhai, Wenguang
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 17 (06) : 1089 - 1132
  • [4] An explicit matrix factorization of cubic hypersurfaces of small dimension
    Kim, Yeongrak
    Schreyer, Frank-Olaf
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (08)
  • [5] CUBIC HYPERSURFACES AND A VERSION OF THE CIRCLE METHOD FOR NUMBER FIELDS
    Browning, T. D.
    Vishe, P.
    DUKE MATHEMATICAL JOURNAL, 2014, 163 (10) : 1825 - 1883
  • [6] A Mordell-Weil theorem for cubic hypersurfaces of high dimension
    Papanikolopoulos, Stefanos
    Siksek, Samir
    ALGEBRA & NUMBER THEORY, 2017, 11 (08) : 1953 - 1965
  • [7] THE DENSITY OF FIBRES WITH A RATIONAL POINT FOR A FIBRATION OVER HYPERSURFACES OF LOW DEGREE
    Sofos, Efthymios
    Visse-Martindale, Erik
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (02) : 679 - 709
  • [8] Rational solutions of pairs of diagonal equations, one cubic and one quadratic
    Wooley, Trevor D.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 110 : 325 - 356
  • [9] ON ARTIN'S CONJECTURE: LINEAR SLICES OF DIAGONAL HYPERSURFACES
    Bruedern, Joerg
    Robert, Olivier
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) : 1867 - 1911
  • [10] Hypersurfaces of a Sasakian Manifold
    Alodan, Haila
    Deshmukh, Sharief
    Bin Turki, Nasser
    Vilcu, Gabriel-Eduard
    MATHEMATICS, 2020, 8 (06)