On nonlinear discrete-time systems driven by Markov chains

被引:12
|
作者
Tejada, A. [1 ]
Gonzalez, O. R. [2 ]
Gray, W. S. [2 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
[2] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2010年 / 347卷 / 05期
关键词
Markov property; Markov kernel; Stochastic hybrid systems; STABILITY ANALYSIS; PERFORMANCE; SUBJECT;
D O I
10.1016/j.jfranklin.2010.02.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The behavior of a class of hybrid systems in discrete-time can be represented by nonlinear difference equations with a Markov input. The analysis of such a system usually starts by establishing the Markov property of the joint process formed by combining the system's state and input. There are, however, no complete proofs of this property. This paper aims to address this problem by presenting a complete and explicit proof that uses only fundamental measure-theoretical concepts. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:795 / 805
页数:11
相关论文
共 50 条
  • [1] Local Stabilization of Discrete-Time Nonlinear Systems
    Lendek, Zsofia
    Lauber, Jimmy
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (01) : 52 - 62
  • [2] Discrete-Time Convergent Nonlinear Systems
    Jungers, Marc
    Shakib, Mohammad Fahim
    van de Wouw, Nathan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (10) : 6731 - 6745
  • [3] Stabilization of Discrete-Time Nonlinear Switching Systems
    Benmessaouda, Ouahiba
    Benzaouia, Abdellah
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (10) : 3277 - 3286
  • [4] Stabilization for a class of continuous-time nonlinear Markov jump systems via the approximate discrete-time model
    Yu, Peilong
    Zhu, Jin
    Kang, Yu
    Zhang, Niankun
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (12) : 5635 - 5651
  • [5] A discrete-time framework for stability analysis of nonlinear networked control systems
    van de Wouw, N.
    Nesic, D.
    Heemels, W. P. M. H.
    AUTOMATICA, 2012, 48 (06) : 1144 - 1153
  • [6] Event-Triggered Filtering for Nonlinear Networked Discrete-Time Systems
    Sun, Yiyong
    Yu, Jinyong
    Chen, Ziran
    Xing, Xing
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (11) : 7163 - 7170
  • [7] New state estimator of nonlinear discrete-time systems
    Aljuwaiser, E.
    Badr, R.
    Hassan, M. F.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2017, 38 (05) : 754 - 777
  • [8] Simultaneous Quadratic Stabilization for Discrete-Time Nonlinear Systems
    Wu, Jenq-Lang
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (06) : 1443 - 1448
  • [9] Symmetries and first integrals for nonlinear discrete-time systems
    Menini, Laura
    Tornambe, Antonio
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 1194 - 1199
  • [10] Stochastic finite-time stabilization for discrete-time positive Markov jump time-delay systems
    Liu, Li-Juan
    Zhang, Xuesong
    Zhao, Xudong
    Yang, Bin
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (01): : 84 - 103