Generalized skew normal model

被引:55
作者
Gupta, RC [1 ]
Gupta, RD
机构
[1] Univ Maine, Dept Math & Stat, Orono, ME 04469 USA
[2] Univ New Brunswick, Dept Comp Sci & Appl Stat, Fredericton, NB E3B 5A3, Canada
关键词
normal distribution; skewness; log concave; stochastic ordering; maximum likelihood estimator;
D O I
10.1007/BF02595784
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The skew normal distribution proposed by Azzalini (1985) can be a suitable model for the analysis of data exhibiting a unimodal density function having some skewness present., a structure often occurring in data analysis. In this paper, we study a generalization of the basic Azzalini model proposed by Balakrishnan, as a discussant of Arnold and Beaver (2002). The basic structural properties of the model including the reliability properties are presented. Estimation and testing of hypothesis of the skew parameter are discussed. Some comparisons of the models in terms of mean, variance and skewness are provided. Two data sets are analyzed.
引用
收藏
页码:501 / 524
页数:24
相关论文
共 50 条
[41]   A flexible generalization of the skew normal distribution based on a weighted normal distribution [J].
Mahdi Rasekhi ;
Rahim Chinipardaz ;
Sayed Mohammad Reza Alavi .
Statistical Methods & Applications, 2016, 25 :375-394
[42]   Applications of Skew Models Using Generalized Logistic Distribution [J].
Rathie, Pushpa Narayan ;
Silva, Paulo ;
Olinto, Gabriela .
AXIOMS, 2016, 5 (02)
[43]   On a Generalized Alpha Skew Laplace Distribution: Properties and Applications [J].
Das, Jondeep ;
Hazarika, Partha Jyoti ;
Pathak, Dimpal ;
Sulewski, Piotr .
AUSTRIAN JOURNAL OF STATISTICS, 2025, 54 (02) :125-150
[44]   Generalized skew-elliptical distributions and their quadratic forms [J].
Genton, MG ;
Loperfido, NMR .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2005, 57 (02) :389-401
[45]   Generalized skew-elliptical distributions and their quadratic forms [J].
Marc G. Genton ;
Nicola M. R. Loperfido .
Annals of the Institute of Statistical Mathematics, 2005, 57 :389-401
[46]   Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions [J].
Wang, Sheng ;
Zimmerman, Dale L. ;
Breheny, Patrick .
JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 179
[47]   Prediction from a normal model using a generalized inverse Gaussian prior [J].
L. Thabane ;
M. Safiul Haq .
Statistical Papers, 1999, 40 :175-184
[48]   Prediction from a normal model using a generalized inverse Gaussian prior [J].
Thabane, L ;
Haq, MS .
STATISTICAL PAPERS, 1999, 40 (02) :175-184
[49]   Applying the skew-normal distribution to model coherent MPI and to evaluate its impact on PAM signals [J].
Cancela, Luis G. C. ;
Pires, Joao J. O. .
OPTICAL FIBER TECHNOLOGY, 2020, 56
[50]   A new class of Skew-Normal-Cauchy distribution [J].
Arrue, Jaime ;
Gomez, Hector W. ;
Salinas, Hugo S. ;
Bolfarine, Heleno .
SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2015, 39 (01) :35-50