A generalised model for electro-osmotic flow in porous media

被引:3
|
作者
Di Fraia, Simona [1 ]
Nithiarasu, P. [2 ]
机构
[1] Univ Napoli Parthenope, Dipartimento Ingn, Naples, Italy
[2] Swansea Univ, Sch Engn, Swansea, W Glam, Wales
关键词
Porous media; Charged particles; Electro-osmosis; Generalised model; Fractional step method; CAPILLARY ELECTROCHROMATOGRAPHY; NUMERICAL-SIMULATION; NATURAL-CONVECTION; MICROPOROUS MEDIA; HEAT-TRANSFER; FLUID; INTRAPARTICLE; VELOCITIES; DISPERSION; BOUNDARY;
D O I
10.1108/HFF-03-2019-0192
中图分类号
O414.1 [热力学];
学科分类号
摘要
Purpose This study aims at developing a comprehensive model for the analysis of electro-osmotic flow (EOF) through a fluid-saturated porous medium. To fully understand and exploit a number of applications, such a model for EOF through porous media is essential. Design/methodology/approach The proposed model is based on a generalised set of governing equations used for modelling flow through fluid saturated porous media. These equations are modified to incorporate appropriate modifications to represent electro-osmosis (EO). The model is solved through the finite element method (FEM). The validity of the proposed numerical model is demonstrated by comparing the numerical results of internal potential and velocity distribution with corresponding analytical expressions. The model introduced is also used to carry out a sensitivity analysis of the main parameters that control EOF. Findings The analysis carried out confirms that EO in free channels without porous obstruction is effective only at small scales, as largely discussed in the available literature. Using porous media makes EO independent of the channel scale. Indeed, as the channel size increases, the presence of the charged porous medium is essential to induce fluid flow. Moreover, results demonstrate that flow is significantly affected by the characteristics of the porous medium, such as particle size, and by the zeta potential acting on the charged surfaces. Originality/value To the best of the authors' knowledge, a comprehensive FEM model, based on the generalised equations to simulate EOF in porous media, is proposed here for the first time.
引用
收藏
页码:4895 / 4924
页数:30
相关论文
共 50 条
  • [41] Interfacial resistance model for electro-osmotic system
    Gan, Qiyun
    Zhou, Jian
    Tao, Yanli
    Jiang, Yicheng
    GEOTECHNIQUE, 2022, 74 (03): : 221 - 237
  • [42] Numerical model of electro-osmotic consolidation in clay
    Hu, L.
    Wu, W.
    Wu, H.
    GEOTECHNIQUE, 2012, 62 (06): : 537 - 541
  • [43] Charge inversion and flow reversal in a nanochannel electro-osmotic flow
    Qiao, R
    Aluru, NR
    PHYSICAL REVIEW LETTERS, 2004, 92 (19) : 198301 - 1
  • [44] Development of an electro-osmotic flow model to study the dynamic behaviour in human meridian
    Sheu, Tony W. H.
    Huang, Vincent C.
    Rani, H. P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (06) : 739 - 751
  • [45] Electro-osmotic flow enhancement in carbon nanotube membranes
    Mattia, Davide
    Leese, Hannah
    Calabro, Francesco
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2060):
  • [46] Molecular dynamics simulation of electro-osmotic flow in a nanonozzle
    Kamali, Reza
    Radmehr, Payam
    Binesh, Alireza
    MICRO & NANO LETTERS, 2012, 7 (10) : 1049 - 1052
  • [47] REVERSAL OF ELECTRO-OSMOTIC FLOW IN GLASS FIBRE PAPER
    THOMAS, R
    CHEMISTRY & INDUSTRY, 1957, (48) : 1571 - 1572
  • [48] The Effect of pH on Electro-osmotic Flow in Argillaceous Rocks
    Ahmed M.Y.
    Taibi S.
    Souli H.
    Fleureau J.-M.
    Geotechnical and Geological Engineering, 2013, 31 (4) : 1335 - 1348
  • [49] Electro-osmotic flow near a surface charge discontinuity
    Yariv, E
    JOURNAL OF FLUID MECHANICS, 2004, 521 : 181 - 189
  • [50] Electro-osmotic flow in coated nanocapillaries: a theoretical investigation
    Marconi, Umberto Marini Bettolo
    Monteferrante, Michele
    Melchionna, Simone
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (46) : 25473 - 25482