Bayesian reconstruction of chaotic dynamical systems

被引:59
作者
Meyer, R [1 ]
Christensen, N
机构
[1] Univ Auckland, Dept Stat, Auckland 1, New Zealand
[2] Carleton Coll, Northfield, MN 55057 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 03期
关键词
D O I
10.1103/PhysRevE.62.3535
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a Bayesian approach to the problem of determining parameters of nonlinear models from time series of noisy data. Recent approaches to this problem have been statistically flawed. By applying a Markov chain Monte Carlo algorithm, specifically the Gibbs sampler, we estimate the parameters of chaotic maps. A complete statistical analysis is presented, the Gibbs sampler method is described in detail, and example applications are presented.
引用
收藏
页码:3535 / 3542
页数:8
相关论文
共 38 条
  • [1] THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS
    ABARBANEL, HDI
    BROWN, R
    SIDOROWICH, JJ
    TSIMRING, LS
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (04) : 1331 - 1392
  • [2] LIGO - THE LASER-INTERFEROMETER-GRAVITATIONAL-WAVE-OBSERVATORY
    ABRAMOVICI, A
    ALTHOUSE, WE
    DREVER, RWP
    GURSEL, Y
    KAWAMURA, S
    RAAB, FJ
    SHOEMAKER, D
    SIEVERS, L
    SPERO, RE
    THORNE, KS
    VOGT, RE
    WEISS, R
    WHITCOMB, SE
    ZUCKER, ME
    [J]. SCIENCE, 1992, 256 (5055) : 325 - 333
  • [3] [Anonymous], 1996, BAYES EMPERICAL BAYE
  • [4] LIKELIHOOD AND BAYESIAN PREDICTION OF CHAOTIC SYSTEMS
    BERLINER, LM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (416) : 938 - 952
  • [5] Best N., 1995, CODA MANUAL VERSION
  • [6] A MONTE-CARLO APPROACH TO NONNORMAL AND NONLINEAR STATE-SPACE MODELING
    CARLIN, BP
    POLSON, NG
    STOFFER, DS
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (418) : 493 - 500
  • [7] Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis
    Christensen, N
    Meyer, R
    [J]. PHYSICAL REVIEW D, 1998, 58 (08)
  • [8] COLLET P, 1980, INTERATED MAPS INTER
  • [9] Nonlinear noise reduction through Monte Carlo sampling
    Davies, ME
    [J]. CHAOS, 1998, 8 (04) : 775 - 781
  • [10] Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398