Harmonic numbers and finite groups

被引:3
作者
Baishya, Sekhar Jyoti [1 ]
Das, Ashish Kumar [1 ]
机构
[1] NE Hill Univ, Dept Math, Shillong 793022, Meghalaya, India
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2014年 / 132卷
关键词
Finite groups; harmonic numbers; harmonic groups; POSITIVE DIVISORS; INEQUALITY; ORDERS;
D O I
10.4171/RSMUP/132-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a finite group G, let tau(G) be the number of normal subgroups of G and sigma(G) be the sum of the orders of the normal subgroups of G. The group G is said to be harmonic if H(G) := vertical bar G vertical bar tau(G)/sigma(G) is an integer. In this paper, all finite groups for which 1 <= H(G) <= 2 have been characterized. Harmonic groups of order pq and of order pqr, where p < q < r are primes, are also classified. Moreover, it has been shown that if G is harmonic and G not congruent to C-6, then tau(G) >= 6.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 14 条
[1]   Numbers whose positive divisors have small integral harmonic mean [J].
Cohen, GL .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :883-891
[2]   On arithmetic functions of finite groups [J].
Das, Ashish Kumar .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 75 (01) :45-58
[3]   Perfect Numbers and Finite Groups [J].
De Medts, Tom ;
Maroti, Attila .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2013, 129 :17-33
[4]   Finite groups determined by an inequality of the orders of their subgroups [J].
De Medts, Tom ;
Tarnauceanu, Marius .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (04) :699-704
[5]  
GARCIA M, 1954, AM MATH MONTHLY, V61, P89
[6]  
Goto T, 2004, MATH COMPUT, V73, P475, DOI 10.1090/S0025-5718-03-01554-0
[7]   All harmonic numbers less than 1014 [J].
Goto, Takeshi ;
Okeya, Katsuyuki .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2007, 24 (03) :275-288
[8]   UBER DAS HARMONISCHE MITTEL DER TEILER EINER NATURLICHEN ZAHL [J].
KANOLD, HJ .
MATHEMATISCHE ANNALEN, 1957, 133 (04) :371-374
[9]  
KURZWEIL H, 2004, UNIVERSITEX, P64, DOI 10.1007/b97433
[10]  
LEINSTER T., ARXIVMATHGR0104012V1