A Simple Proof of Dvoretzky-Type Theorem for Hausdorff Dimension in Doubling Spaces

被引:1
作者
Mendel, Manor [1 ]
机构
[1] Open Univ Israel, Math & Comp Sci Dept, Univ Rd,POB 808, IL-43107 Raanana, Israel
关键词
Hausdorff dimension; Metric Ramsey theory; biLipschitz embeddings; Dvoretzky-type theorems; SETS;
D O I
10.1515/agms-2022-0133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The ultrametric skeleton theorem [Mendel, Naor 2013] implies, among other things, the following nonlinear Dvoretzky-type theorem for Hausdorff dimension: For any 0 < beta < alpha, any compact metric space X of Hausdorff dimension alpha contains a subset which is biLipschitz equivalent to an ultrametric and has Hausdorff dimension at least beta. In this note we present a simple proof of the ultrametric skeleton theorem in doubling spaces using Bartal's Ramsey decompositions [Bartal 2021]. The same general approach is also used to answer a question of Zindulka [Zindulka 2020] about the existence of "nearly ultrametric" subsets of compact spaces having full Hausdorff dimension.
引用
收藏
页码:50 / 62
页数:13
相关论文
共 15 条
[1]  
ASSOUAD P, 1983, B SOC MATH FR, V111, P429
[2]  
AWERBUCH B, 1990, ANN IEEE SYMP FOUND, P503
[3]  
Bartal Yair, ARXIV210403484, V2021
[4]  
HOWROYD JD, 1995, P LOND MATH SOC, V70, P581
[5]   Hausdorff Dimension of Metric Spaces and Lipschitz Maps onto Cubes [J].
Keleti, Tamas ;
Mathe, Andras ;
Zindulka, Ondrej .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (02) :289-302
[6]  
Klenke Achim, 2008, PROBABILITY THEORY U, DOI [10.1007/978-1-84800-048-3, DOI 10.1007/978-1-84800-048-3]
[7]   Mapping analytic sets onto cubes by little Lipschitz functions [J].
Maly, Jan ;
Zindulka, Ondrej .
EUROPEAN JOURNAL OF MATHEMATICS, 2019, 5 (01) :91-105
[8]  
MATTILA P, 1995, GEOMETRY SETS MEASUR
[9]   Ultrametric skeletons [J].
Mendel, Manor ;
Naor, Assaf .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (48) :19256-19262
[10]   Ultrametric subsets with large Hausdorff dimension [J].
Mendel, Manor ;
Naor, Assaf .
INVENTIONES MATHEMATICAE, 2013, 192 (01) :1-54