Scaling Hypothesis for Matrix Product States

被引:47
作者
Vanhecke, Bram [1 ]
Haegeman, Jutho [1 ]
Van Acoleyen, Karel [1 ]
Vanderstraeten, Laurens [1 ]
Verstraete, Frank [1 ]
机构
[1] Univ Ghent, Dept Phys & Astron, Krijgslaan 281, B-9000 Ghent, Belgium
基金
欧洲研究理事会;
关键词
RENORMALIZATION-GROUP;
D O I
10.1103/PhysRevLett.123.250604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study critical spin systems and field theories using matrix product states, and formulate a scaling hypothesis in terms of operators, eigenvalues of the transfer matrix, and lattice spacing in the case of field theories. The critical point, exponents, and central charge are determined by optimizing them to obtain a data collapse. We benchmark this method by studying critical Ising and Potts models, where we also obtain a scaling Ansatz for the correlation length and entanglement entropy. The formulation of those scaling functions turns out to be crucial for studying critical quantum field theories on the lattice. For the case of lambda phi(4) with mass parameter mu(2) and lattice spacing a, we demonstrate a double data collapse for the correlation length delta xi(mu, lambda, D) = (xi) over tilde((alpha - alpha(c))(delta/a)(-1/nu)) with D the bond dimension, delta the gap between eigenvalues of the transfer matrix, and alpha(c) = mu(2)(R)/lambda the parameter which fixes the critical quantum field theory.
引用
收藏
页数:6
相关论文
共 44 条
[1]  
[Anonymous], ARXIVCONDMAT0407066
[2]   Matrix product state renormalization [J].
Bal, M. ;
Rams, M. M. ;
Zauner, V. ;
Haegeman, J. ;
Verstraete, F. .
PHYSICAL REVIEW B, 2016, 94 (20)
[3]   The mass spectrum of the Schwinger model with matrix product states [J].
Banuls, M. C. ;
Cichy, K. ;
Cirac, J. I. ;
Jansen, K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[4]   A measure of data collapse for scaling [J].
Bhattacharjee, SM ;
Seno, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (33) :6375-6380
[5]   Monte Carlo determination of the critical coupling in φ24 theory [J].
Bosetti, Paolo ;
De Palma, Barbara ;
Guagnelli, Marco .
PHYSICAL REVIEW D, 2015, 92 (03)
[6]   AN INVESTIGATION OF FINITE SIZE SCALING [J].
BREZIN, E .
JOURNAL DE PHYSIQUE, 1982, 43 (01) :15-22
[7]   New Monte Carlo determination of the critical coupling in φ24 theory [J].
Bronzin, Simone ;
De Palma, Barbara ;
Guagnelli, Marco .
PHYSICAL REVIEW D, 2019, 99 (03)
[8]   Matrix Product States for Gauge Field Theories [J].
Buyens, Boye ;
Haegeman, Jutho ;
Van Acoleyen, Karel ;
Verschelde, Henri ;
Verstraete, Frank .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)
[9]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[10]  
Cardy J., 1988, FINITE SIZE SCALING