Confidence bands in non-parametric errorsin-variables regression

被引:23
作者
Delaigle, Aurore [1 ]
Hall, Peter [1 ]
Jamshidi, Farshid [1 ]
机构
[1] Univ Melbourne, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Bandwidth choice; Bootstrap; Confidence interval; Coverage accuracy; Double bootstrap; Kernel methods; Measurement error; Non-parametric curve estimation; Non-parametric regression; Pointwise confidence band; Simulation-extrapolation methods; IN-VARIABLES; DECONVOLUTION PROBLEMS; DENSITY-ESTIMATION; WILD BOOTSTRAP; OPTIMAL RATES; CONVERGENCE; INTERVALS; COVERAGE; ITERATION; MODELS;
D O I
10.1111/rssb.12067
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Errors-in-variables regression is important in many areas of science and social science, e.g. in economics where it is often a feature of hedonic models, in environmental science where air quality indices are measured with error, in biology where the vegetative mass of plants is frequently obscured by mismeasurement and in nutrition where reported fat intake is typically subject to substantial error. To date, in non-parametric contexts, the great majority of work has focused on methods for estimating the mean as a function, with relatively little attention being paid to techniques for empirical assessment of the accuracy of the estimator. We develop methodologies for constructing confidence bands. Our contributions include techniques for tuning parameter choice aimed at minimizing the coverage error of confidence bands.
引用
收藏
页码:149 / 169
页数:21
相关论文
共 43 条
[1]  
[Anonymous], 1994, Kernel smoothing
[2]  
Beran A., 1987, BIOMETRIKA, V74, P457
[3]   SOME GLOBAL MEASURES OF DEVIATIONS OF DENSITY-FUNCTION ESTIMATES [J].
BICKEL, PJ ;
ROSENBLA.M .
ANNALS OF STATISTICS, 1973, 1 (06) :1071-1095
[4]   Confidence bands for inverse regression models [J].
Birke, Melanie ;
Bissantz, Nicolai ;
Holzmann, Hajo .
INVERSE PROBLEMS, 2010, 26 (11)
[5]   Non-parametric confidence bands in deconvolution density estimation [J].
Bissantz, Nicolai ;
Dumbgen, Lutz ;
Holzmann, Hajo ;
Munk, Axel .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 :483-506
[6]   Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators [J].
Bissantz, Nicolai ;
Birke, Melanie .
JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (10) :2364-2375
[7]   RATE OF CONVERGENCE FOR THE WILD BOOTSTRAP IN NONPARAMETRIC REGRESSION [J].
CAOABAD, R .
ANNALS OF STATISTICS, 1991, 19 (04) :2226-2231
[8]  
Carroll J., 2006, MEASUREMENT ERROR NO, V2nd edn, DOI [10.1201/9781420010138, DOI 10.1201/9781420010138]
[9]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[10]  
Claeskens G, 2003, ANN STAT, V31, P1852