The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain

被引:95
作者
Edwards, Sarah R.
Wandless, Thomas J. [1 ]
机构
[1] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
D O I
10.1074/jbc.M700498200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rapamycin is an immunosuppressive drug that binds simultaneously to the 12-kDa FK506- and rapamycin-binding protein ( FKBP12, or FKBP) and the FKBP-rapamycin binding (FRB) domain of the mammalian target of rapamycin ( mTOR) kinase. The resulting ternary complex has been used to conditionally perturb protein function, and one such method involves perturbation of a protein of interest through its mislocalization. We synthesized two rapamycin derivatives that possess large sub-stituents at the C-16 position within the FRB-binding interface, and these derivatives were screened against a library of FRB mutants using a three-hybrid assay in Saccharomyces cerevisiae. Several FRB mutants responded to one of the rapamycin derivatives, and twenty of these mutants were further characterized in mammalian cells. The mutants most responsive to the ligand were fused to yellow fluorescent protein, and fluorescence levels in the presence and absence of the ligand were measured to determine stability of the fusion proteins. Wild-type and mutant FRB domains were expressed at low levels in the absence of the rapamycin derivative, and expression levels rose up to 10-fold upon treatment with ligand. The synthetic rapamycin derivatives were further analyzed using quantitative mass spectrometry, and one of the compounds was found to contain contaminating rapamycin. Furthermore, uncontaminated analogs retained the ability to inhibit mTOR, although with diminished potency relative to rapamycin. The ligand-dependent stability displayed by wild-type FRB and FRB mutants as well as the inhibitory potential and purity of the rapamycin derivatives should be considered as potentially confounding experimental variables when using these systems.
引用
收藏
页码:13395 / 13401
页数:7
相关论文
共 22 条
[1]   A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules [J].
Banaszynski, Laura A. ;
Chen, Lin-chun ;
Maynard-Smith, Lystranne A. ;
Ooi, A. G. Lisa ;
Wandless, Thomas J. .
CELL, 2006, 126 (05) :995-1004
[2]   Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity [J].
Bayle, JH ;
Grimley, JS ;
Stankunas, K ;
Gestwicki, JE ;
Wandless, TJ ;
Crabtree, GR .
CHEMISTRY & BIOLOGY, 2006, 13 (01) :99-107
[3]   Chemically regulated transcription factors reveal the persistence of repressor-resistant transcription after disrupting activator function [J].
Biggar, SR ;
Crabtree, GR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) :25381-25390
[4]   Design of allele-specific inhibitors to probe protein kinase signaling [J].
Bishop, AC ;
Shah, K ;
Liu, Y ;
Witucki, L ;
Kung, CY ;
Shokat, KM .
CURRENT BIOLOGY, 1998, 8 (05) :257-266
[5]   A MAMMALIAN PROTEIN TARGETED BY G1-ARRESTING RAPAMYCIN-RECEPTOR COMPLEX [J].
BROWN, EJ ;
ALBERS, MW ;
SHIN, TB ;
ICHIKAWA, K ;
KEITH, CT ;
LANE, WS ;
SCHREIBER, SL .
NATURE, 1994, 369 (6483) :756-758
[6]   Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].
Fire, A ;
Xu, SQ ;
Montgomery, MK ;
Kostas, SA ;
Driver, SE ;
Mello, CC .
NATURE, 1998, 391 (6669) :806-811
[7]   TEMPORAL CONTROL OF GENE-EXPRESSION IN TRANSGENIC MICE BY A TETRACYCLINE-RESPONSIVE PROMOTER [J].
FURTH, PA ;
STONGE, L ;
BOGER, H ;
GRUSS, P ;
GOSSEN, M ;
KISTNER, A ;
BUJARD, H ;
HENNIGHAUSEN, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (20) :9302-9306
[8]  
Gietz RD, 2002, METHOD ENZYMOL, V350, P87
[9]   PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane [J].
Heo, Won Do ;
Inoue, Takanari ;
Park, Wei Sun ;
Kim, Man Lyang ;
Park, Byung Ouk ;
Wandless, Thomas J. ;
Meyer, Tobias .
SCIENCE, 2006, 314 (5804) :1458-1461
[10]   Dimeric ligands define a role for transcriptional activation domains in reinitiation [J].
Ho, SN ;
Biggar, SR ;
Spencer, DM ;
Schreiber, SL ;
Crabtree, GR .
NATURE, 1996, 382 (6594) :822-826