Connecting atomistic and mesoscale simulations of crystal plasticity

被引:262
|
作者
Bulatov, V
Abraham, FF
Kubin, L
Devincre, B
Yip, S
机构
[1] MIT, Cambridge, MA 02139 USA
[2] IBM Corp, Almaden Res Ctr, Div Res, San Jose, CA 95120 USA
[3] ONERA, CNRS, Lab Etud Microstruct, F-92322 Chatillon, France
关键词
D O I
10.1038/35577
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A quantitative description of plastic deformation in crystalline solids requires a knowledge of how an assembly of dislocations-the defects responsible for crystal plasticity-evolves under stress(1). In this context, molecular-dynamics simulations have been used to elucidate interatomic processes on microscopic (similar to 10(-10) m) scales(2), whereas 'dislocation-dynamics' simulations have explored the long-range elastic interactions between dislocations on mesoscopic (similar to 10(-6) m) scales(3). But a quantitative connection between interatomic processes and behaviour on mesoscopic scales has hitherto been lacking. Here we show how such a connection can be made using large-scale (100 million atoms) molecular-dynamics simulations to establish the local rules for mesoscopic simulations of interacting dislocations. In our molecular-dynamics simulations,we observe directly the formation and subsequent destruction of a junction (a Lomer-Cottrell lock) between two dislocations in the plastic zone near a crack tip: the formation of such junctions is an essential process in plastic deformation, as they act as an obstacle to dislocation motion. The force required to destroy this junction is then used to formulate the critical condition for junction destruction in a dislocation-dynamics simulation, the results of which compare well with previous deformation experiments(4).
引用
收藏
页码:669 / 672
页数:4
相关论文
共 50 条
  • [1] Connecting atomistic and mesoscale simulations of crystal plasticity
    Vasily Bulatov
    Farid F. Abraham
    Ladislas Kubin
    Benoit Devincre
    Sidney Yip
    Nature, 1998, 391 : 669 - 672
  • [2] A Quantized Crystal Plasticity Finite Element Model for Nanocrystalline Metals: Connecting Atomistic Simulations and Experiments
    Li, Lin
    Lee, Myoung-Gyu
    Anderson, Peter M.
    NUMIFORM 2010, VOLS 1 AND 2: DEDICATED TO PROFESSOR O. C. ZIENKIEWICZ (1921-2009), 2010, 1252 : 841 - 841
  • [3] Classical simulations from the atomistic to the mesoscale and back: coarse graining an azobenzene liquid crystal
    Peter, Christine
    Delle Site, Luigi
    Kremer, Kurt
    SOFT MATTER, 2008, 4 (04) : 859 - 869
  • [4] Atomistic and mesoscale simulations of free solidification in comparison
    Maltsev, Ilya
    Mirzoev, Alexandr
    Danilov, Denis
    Nestler, Britta
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (05)
  • [5] Crack tip plasticity in single crystal UO2: Atomistic simulations
    Zhang, Yongfeng
    Liu, Xiang-Yang
    Millett, Paul C.
    Tonks, Michael
    Andersson, David A.
    Biner, Bulent
    JOURNAL OF NUCLEAR MATERIALS, 2012, 430 (1-3) : 96 - 105
  • [6] Deriving effective mesoscale potentials from atomistic simulations
    Reith, D
    Pütz, M
    Müller-Plathe, F
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (13) : 1624 - 1636
  • [7] Elementary atomistic mechanism of crystal plasticity
    Psakhie, S. G.
    Zolnikov, K. P.
    Kryzhevich, D. S.
    PHYSICS LETTERS A, 2007, 367 (03) : 250 - 253
  • [8] Aggregation of the TAU Protein: Insights from Atomistic and Mesoscale Simulations
    Shea, Joan-Emma
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 185A - 185A
  • [9] Linking atomistic and mesoscale simulations of water-soluble polymers
    Noro, MG
    Paul, PKC
    Warren, PB
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (24) : 7190 - 7191
  • [10] Atomistic simulations of the nanoindentation-induced incipient plasticity in Ni3Al crystal
    Xiong, Kai
    Lu, Haiming
    Gu, Jianfeng
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 115 : 214 - 226