Technology readiness assessment of materials for DEMO in-vessel

被引:15
作者
Richardson, M. [1 ]
Gorley, M. [1 ]
Wang, Y. [1 ]
Aiello, G. [2 ]
Pintsuk, G. [3 ]
Gaganidze, E. [4 ]
Richou, M. [5 ]
Henry, J. [6 ]
Vila, R. [7 ]
Rieth, M. [4 ]
机构
[1] UK Atom Energy Author, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] EUROfus PMU, Boltzmannstr 2, D-85748 Garching, Germany
[3] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, Trilateral Euregio Cluster TEC, D-52425 Julich, Germany
[4] Karlsruhe Inst Technol, Inst Appl Mat IAM AWP, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[5] CEA, IRFM, F-13108 St Paul Les Durance, France
[6] Univ Paris Saclay, Serv Rech Met Appl, CEA, F-91191 Gif Sur Yvette, France
[7] Lab Nacl Fus CIEMAT, Madrid, Spain
基金
英国工程与自然科学研究理事会;
关键词
Technology readiness level; TRL; MTRL; DEMO; Fusion materials; EUROFER97; Tungsten; CuCrZr; RESEARCH-AND-DEVELOPMENT; BREEDING BLANKET DESIGN; PLASMA-FACING MATERIALS; FATIGUE-CRACK GROWTH; HIGH-HEAT-FLUX; WALL MOCK-UP; MECHANICAL-PROPERTIES; TUNGSTEN MATERIALS; CONCEPTUAL DESIGN; DIVERTOR TARGET;
D O I
10.1016/j.jnucmat.2021.152906
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A dedicated procedure was developed to categorize the technology readiness of materials for specific DEMO in-vessel fusion reactor applications. This methodology was employed to assess the technological maturity of materials under development within the EUROfusion materials work package (WPMAT). This covers materials intended for structural, high heat flux, optical and dielectric applications in the Euro-pean DEMO fusion reactor (breeder materials and barrier coatings are not covered here). The baseline materials have been assigned DEMO Material Technology Readiness Levels (MTRLs) of 4 (EUROFER97), 3 (conventional tungsten) and 4 (Copper-Chromium-Zirconium). In addition, a further 28 candidate mate-rials (and groups of materials) were also assessed. These were generally assigned DEMO MTRLs in the range of 2-3. This process has highlighted the wide range of materials under development within WP-MAT. However, it has also brought into focus the many challenges facing DEMO materials development. While the lack of technologically ready materials is clearly a source of risk to DEMO, the introduction of a biennial review of technology readiness within WPMAT is intended to facilitate more effective planning and targeted materials development, in line with the strategic plans of EUROfusion. This paper highlights the methodologies for fusion specific material technology readiness levels, their application for EU-DEMO and the effectiveness of these in strategic materials development. Crown Copyright (c) 2021 Published by Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 72 条
[1]  
ABDOU MA, 1995, FUSION ENG DES, V27, P111, DOI 10.1016/0920-3796(95)90122-1
[2]  
Abdou MA, 1996, FUSION TECHNOL, V29, P1
[3]  
[Anonymous], 2015, Technology Readiness Assessment Guide
[4]  
[Anonymous], 2013, ISO 16290
[5]   Mechanical and microstructural investigations of tungsten and doped tungsten materials produced via powder injection molding [J].
Antusch, Steffen ;
Armstrong, David E. J. ;
Ben Britton, T. ;
Commin, Lorelei ;
Gibson, James S. K. -L. ;
Greuner, Henri ;
Hoffmann, Jan ;
Knabl, Wolfram ;
Pintsuk, Gerald ;
Rieth, Michael ;
Roberts, Steve G. ;
Weingaertner, Tobias .
NUCLEAR MATERIALS AND ENERGY, 2015, 3-4 :22-31
[6]   Two component tungsten powder injection molding - An effective mass production process [J].
Antusch, Steffen ;
Commin, Lorelei ;
Mueller, Marcus ;
Piotter, Volker ;
Weingaertner, Tobias .
JOURNAL OF NUCLEAR MATERIALS, 2014, 447 (1-3) :314-317
[7]   Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO [J].
Aubert, P. ;
Tavassoli, F. ;
Rieth, M. ;
Diegele, E. ;
Poitevin, Y. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 417 (1-3) :43-50
[8]  
Australian Renewable Energy Agency, 2014, COMM READ IND REN EN
[9]   Tritium retention in W plasma-facing materials: Impact of the material structure and helium irradiation [J].
Bernard, E. ;
Sakamoto, R. ;
Hodille, E. ;
Kreter, A. ;
Autissier, E. ;
Barthe, M-f ;
Desgardin, P. ;
Schwarz-Selinger, T. ;
Burwitz, V ;
Feuillastre, S. ;
Garcia-Argote, S. ;
Pieters, G. ;
Rousseau, B. ;
Ialovega, M. ;
Bisson, R. ;
Ghiorghiu, F. ;
Corr, C. ;
Thompson, M. ;
Doerner, R. ;
Markelj, S. ;
Yamada, H. ;
Yoshida, N. ;
Grisolia, C. .
NUCLEAR MATERIALS AND ENERGY, 2019, 19 :403-410
[10]   Self-passivating W-Cr-Y alloys: Characterization and testing [J].
Calvo, Aida ;
Garcla-Rosales, Carmen ;
Ordas, Nerea ;
Iturriza, Inigo ;
Schlueter, Karsten ;
Koch, Freimut ;
Pintsuk, Gerald ;
Tejado, Elena ;
Ygnacio Pastor, Jose .
FUSION ENGINEERING AND DESIGN, 2017, 124 :1118-1121