Simple and Efficient Production of Highly Soluble Daidzin Glycosides by Amylosucrase from Deinococcus geothermalis

被引:18
作者
Rha, Chan-Su [1 ]
Kim, Eun-Ryoung [2 ,3 ]
Kim, Ye-Jin [2 ,3 ]
Jung, Young Sung [1 ]
Kim, Dae-Ok [1 ]
Park, Cheon-Seok [2 ,3 ]
机构
[1] Kyung Hee Univ, Dept Food Sci & Biotechnol, Yongin 17104, South Korea
[2] Kyung Hee Univ, Grad Sch Biotechnol, Yongin 17104, South Korea
[3] Kyung Hee Univ, Inst Life Sci & Resources, Yongin 17104, South Korea
基金
新加坡国家研究基金会;
关键词
amylosucrase; daidzin; Deinococcus geothermalis; isoflavone; solubility; transglycosylation; MALONYL ISOFLAVONE GLYCOSIDES; BIOAVAILABILITY; GLYCOSYLATION; CYCLODEXTRIN; GLUCOSIDES; DIFFUSION;
D O I
10.1021/acs.jafc.9b05380
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Transglycosylation of amylosucrase from Deinococcus geothermalis (DGAS) was performed using daidzin (daidzein-7-O-glucoside). Unlike cyclodextrin glucanotransferase, DGAS led to the production of new daidzin glucosides with high conversion yields (89%). Structures of these daidzin glucosides (i.e., DA2 and DA3) were daidzein-7-O-alpha-D- glucopyranosyl-(4 -> 1)-O-beta-D-glucopyranoside (daidzin-4 ''-O-alpha-D-glucopyranoside) and daidzein-4'-O-alpha-n-glucopyranosyl-7-O-alpha-D-glucopyranosyl-(1 -> 4)-O-beta-D-glucopyranoside (daidzin-4',4 ''-O-alpha-D-diglucopyranoside), respectively. DA2 and DA3 showed increased solubility of 15.4 mM (127-fold) and 203.3 mM (1686-fold) compared with daidzin, respectively. Kinetic studies revealed V-max of 1.0 mu M/min and K-m' of 175 mu M for DA3 production based on nonlinear regression. DGAS exhibited substrate inhibition behavior at high sucrose concentrations (700-1500 mM). Taken together, these findings indicate that DGAS can attach a glucose unit to a free C-4'-OH via an a-linkage and then produce highly water-soluble isoflavone glycosides with a simple donor, moderate reaction conditions, less waste production, and high yield compared with that observed using the existing processes and enzymes.
引用
收藏
页码:12824 / 12832
页数:9
相关论文
共 40 条
  • [1] Molecular basis of the amylose-like polymer formation catalyzed by Neisseria polysaccharea amylosucrase
    Albenne, C
    Skov, LK
    Mirza, O
    Gajhede, M
    Feller, G
    D'Amico, S
    André, G
    Potocki-Véronèse, G
    van der Veen, BA
    Monsan, P
    Remaud-Simeon, M
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (01) : 726 - 734
  • [2] Chemical glycobiology
    Bertozzi, CR
    Kiessling, LL
    [J]. SCIENCE, 2001, 291 (5512) : 2357 - 2364
  • [3] Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Deinococcus geothermalis
    Chang, Te-Sheng
    Wang, Tzi-Yuan
    Yang, Szu-Yi
    Kao, Yu-Han
    Wu, Jiumn-Yih
    Chiang, Chien-Min
    [J]. MOLECULES, 2019, 24 (12):
  • [4] Possibilities for Producing Energy, Fuels, and Chemicals from Soybean: A Biorefinery Concept
    De Pretto, Cristine
    Camargo Giordano, Raquel de Lima
    Tardioli, Paulo Waldir
    Borba Costa, Caliane Bastos
    [J]. WASTE AND BIOMASS VALORIZATION, 2018, 9 (10) : 1703 - 1730
  • [5] Dewick P.M., 1988, The Flavonoids: Advances in Research Since 1980, V5, P125
  • [6] Physico-chemical properties of corn starch modified with cyclodextrin glycosyltransferase
    Dura, Angela
    Rosell, Cristina M.
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 87 : 466 - 472
  • [7] Chemical glycosylation in the synthesis of glycoconjugate antitumour vaccines
    Galonic, Danica P.
    Gin, David Y.
    [J]. NATURE, 2007, 446 (7139) : 1000 - 1007
  • [8] Flavonoid-gastrointestinal mucus interaction and its potential role in regulating flavonoid bioavailability and mucosal biophysical properties.
    Gonzales, Gerard Bryan
    Van Camp, John
    Smagghe, Guy
    Raes, Katleen
    Mackie, Alan
    [J]. FOOD RESEARCH INTERNATIONAL, 2016, 88 : 342 - 347
  • [9] Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu
    Jackson, CJC
    Dini, JP
    Lavandier, C
    Rupasinghe, HPV
    Faulkner, H
    Poysa, V
    Buzzell, D
    DeGrandis, S
    [J]. PROCESS BIOCHEMISTRY, 2002, 37 (10) : 1117 - 1123
  • [10] Jensen MH, 2004, BIOCHEMISTRY-US, V43, P3104, DOI 10.1021/bi0357762