Isomorphic Quartic K3 Surfaces in the View of Cremona and Projective Transformations

被引:11
作者
Oguiso, Keiji [1 ,2 ]
机构
[1] Univ Tokyo, Math Sci, Meguro Komaba 3-8-1, Tokyo, Japan
[2] Korea Inst Adv Study, Hoegiro 87, Seoul 133722, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2017年 / 21卷 / 03期
关键词
Quartic K3 surfaces; Cremona equivalence; Projective equivalence; PICARD NUMBER; AUTOMORPHISM;
D O I
10.11650/tjm/7833
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there is a pair of smooth complex quartic K3 surfaces S-1 and S-2 in P-3 such that S-1 and S-2 are isomorphic as abstract varieties but not Cremona isomorphic. We also show, in a geometrically explicit way, that there is a pair of smooth complex quartic K3 surfaces S-1 and S-2 in P-3 such that S-1 and S-2 are Cremona isomorphic, but not projectively isomorphic. This work is much motivated by several e-mails from Professors Tuyen Truong and Janos Kollar.
引用
收藏
页码:671 / 688
页数:18
相关论文
共 23 条
[1]  
[Anonymous], J MATH KYOTO U
[2]  
[Anonymous], 2003, Hodge Theory and Complex Algebraic Geometry
[3]  
Barth W. P., 2004, Compact complex surfaces, V4
[4]  
Beauville A, 2000, MICH MATH J, V48, P39
[5]   ORBIT PARAMETRIZATIONS FOR K3 SURFACES [J].
Bhargava, Manjul ;
Ho, Wei ;
Kumar, Abhinav .
FORUM OF MATHEMATICS SIGMA, 2016, 4
[6]  
Catanese F., 2007, QUAD MAT
[7]  
Cayley A., 1869, P LOND MATH SOC, P19
[8]  
Dolgachev I., 1996, J. Math. Sci, V81, P2599, DOI [10.1007/BF02362332, DOI 10.1007/BF02362332]
[9]   THE CAYLEY-OGUISO AUTOMORPHISM OF POSITIVE ENTROPY ON A K3 SURFACE [J].
Festi, Dino ;
Garbagnati, Alice ;
Van Geemen, Bert ;
Van Luijk, Ronald .
JOURNAL OF MODERN DYNAMICS, 2013, 7 (01) :75-97
[10]  
Kollar J., 2016, COMMUNICATIONS