Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy

被引:87
作者
Deniz, Okan [1 ]
Sanchez-Sanchez, Carlos [1 ,6 ]
Dumslaff, Tim [2 ]
Feng, Xinliang [3 ]
Narita, Akimitsu [2 ]
Muellen, Klaus [2 ]
Kharche, Neerav [4 ]
Meunier, Vincent [4 ]
Fasel, Roman [1 ,5 ]
Ruffieux, Pascal [1 ]
机构
[1] Empa Swiss Fed Labs Mat Sci & Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[2] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[3] Tech Univ Dresden, Dept Chem & Food Chem, Chair Mol Funct Mat, Mommsenstr 4, D-01062 Dresden, Germany
[4] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[5] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland
[6] CSIC, ICMM, Sor Juana Ines Cruz 3, Madrid 28049, Spain
基金
瑞士国家科学基金会;
关键词
Graphene nanoribbon; intercalation; surface alloying; scanning tunneling spectroscopy; density functional theory; screening; ON-SURFACE SYNTHESIS; AUGMENTED-WAVE METHOD; BAND-GAP; SUBSTRATE; HETEROJUNCTIONS; ORIENTATION; FABRICATION; DISPERSION; GOLD;
D O I
10.1021/acs.nanolett.6b04727
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electronic properties of graphene nanoribbons grown on metal substrates are significantly masked by the ones of the supporting metal surface. Here, we introduce a novel approach to access the frontier states of armchair graphene nanoribbons (AGNRs). The in situ intercalation of Si at the AGNR/Au(111) interface through surface alloying suppresses the strong contribution of the Au(111) surface state and allows for an unambiguous determination of the frontier electronic states of both wide and narrow band gap AGNRs. First-principles calculations provide insight into substrate induced screening effects, which result in a width-dependent band gap reduction for substrate-supported AGNRs. The strategy reported here provides a unique opportunity to elucidate the electronic properties of various kinds of graphene nanomaterials supported on metal substrates.
引用
收藏
页码:2197 / 2203
页数:7
相关论文
共 44 条
[1]   Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask [J].
Bai, Jingwei ;
Duan, Xiangfeng ;
Huang, Yu .
NANO LETTERS, 2009, 9 (05) :2083-2087
[2]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[3]   Bottom-up graphene nanoribbon field-effect transistors [J].
Bennett, Patrick B. ;
Pedramrazi, Zahra ;
Madani, Ali ;
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. ;
Bokor, Jeffrey .
APPLIED PHYSICS LETTERS, 2013, 103 (25)
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[6]  
Cai JM, 2014, NAT NANOTECHNOL, V9, P896, DOI [10.1038/NNANO.2014.184, 10.1038/nnano.2014.184]
[7]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[8]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[9]  
Chen YC, 2015, NAT NANOTECHNOL, V10, P156, DOI [10.1038/NNANO.2014.307, 10.1038/nnano.2014.307]
[10]   Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors [J].
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Pedramrazi, Zahra ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. .
ACS NANO, 2013, 7 (07) :6123-6128