RNA interference and double-stranded-RNA-activated pathways

被引:89
作者
Sledz, CA [1 ]
Williams, BRG [1 ]
机构
[1] Cleveland Clin Fdn, Lerner Res Inst, Dept Canc Biol, Cleveland, OH 44195 USA
关键词
double-stranded RNA (dSRNA) interferon; RNA interference (RNAi); RNA polymerase; short interfering RNA (siRNA); transcription;
D O I
10.1042/BST0320952
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNAi (RNA interference) has become a powerful tool to determine gene function. Different methods of expressing the short ds (double-stranded) RNA intermediates required for interference in mammalian systems have been developed, including the introduction of si (short interfering) RNAs by direct transfection or driven from transfected plasmids or lentiviral vectors encoding sh (short hairpin) RNAs. Although RNAi relies upon a high degree of specificity, recent findings suggest that off-target non-specific effects can be encountered. We found that transfection of siRNAs can results in an interferon-mediated activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway and global up-regulation of interferon-stimulated genes. This effect is mediated in part by the dsRNA-dependent protein kinase PKR, as this kinase is activated by the 21 bp siRNA and is required in response to the siRNAs. However, the transcription factor IRF3 (interferon-regulatory factor 3) is also activated by siRNA as a primary response, resulting in the stimulation of genes independent of an interferon response. in cells deficient in IRF3, this response is blunted, but can be restored by re-introduction of IRF3. Thus siRNAs induce complex signalling responses in target cells, leading to effects beyond the selective silencing of specific genes.
引用
收藏
页码:952 / 956
页数:5
相关论文
共 23 条
[1]   Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 [J].
Alexopoulou, L ;
Holt, AC ;
Medzhitov, R ;
Flavell, RA .
NATURE, 2001, 413 (6857) :732-738
[2]   Induction of an interferon response by RNAi vectors in mammalian cells [J].
Bridge, AJ ;
Pebernard, S ;
Ducraux, A ;
Nicoulaz, AL ;
Iggo, R .
NATURE GENETICS, 2003, 34 (03) :263-264
[3]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[4]   siRNAs can function as miRNAs [J].
Doench, JG ;
Petersen, CP ;
Sharp, PA .
GENES & DEVELOPMENT, 2003, 17 (04) :438-442
[5]   RNA interference is mediated by 21-and 22-nucleotide RNAs [J].
Elbashir, SM ;
Lendeckel, W ;
Tuschl, T .
GENES & DEVELOPMENT, 2001, 15 (02) :188-200
[6]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[7]   Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].
Fire, A ;
Xu, SQ ;
Montgomery, MK ;
Kostas, SA ;
Driver, SE ;
Mello, CC .
NATURE, 1998, 391 (6669) :806-811
[8]   Micro-RNAs: small is plentiful [J].
Grosshans, H ;
Slack, FJ .
JOURNAL OF CELL BIOLOGY, 2002, 156 (01) :17-21
[9]   RNA interference [J].
Hannon, GJ .
NATURE, 2002, 418 (6894) :244-251
[10]   Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase [J].
Kim, DH ;
Longo, M ;
Han, Y ;
Lundberg, P ;
Cantin, E ;
Rossi, JJ .
NATURE BIOTECHNOLOGY, 2004, 22 (03) :321-325