Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model

被引:384
作者
Han, Shihao [1 ]
Zheng, Liancun [1 ]
Li, Chunrui [1 ,2 ]
Zhang, Xinxin [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mech Engn, Beijing 100083, Peoples R China
关键词
Upper-convected Maxwell fluid; Boundary layer flow; Cattaneo-Christov heat flux model; Analytical solutions; Slip boundary; CONVECTED MAXWELL FLUID; STAGNATION-POINT FLOW; POROUS STRETCHING SHEETS; HOMOTOPY ANALYSIS METHOD; MASS-TRANSFER; UCM FLUIDS; MHD FLOWS; SURFACE; CHANNEL;
D O I
10.1016/j.aml.2014.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This letter presents a research for coupled flow and heat transfer of an upper-convected Maxwell fluid above a stretching plate with velocity slip boundary. Unlike most classical works, the new heat flux model, which is recently proposed by Christov, is employed. Analytical solutions are obtained by using the homotopy analysis method (HAM). The effects of elasticity number, slip coefficient, the relaxation time of the heat flux and the Prandtl number on velocity and temperature fields are analyzed. A comparison of Fourier's Law and the Cattaneo-Christov heat flux model is also presented. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:87 / 93
页数:7
相关论文
共 23 条
[1]   MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel [J].
Abbas, Z. ;
Sajid, M. ;
Hayat, T. .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2006, 20 (04) :229-238
[2]   The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets [J].
Aliakbar, V. ;
Alizadeh-Pahlavan, A. ;
Sadeghy, K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) :779-794
[3]   MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method [J].
Alizadeh-Pahlavan, Amir ;
Aliakbar, Vahid ;
Vakili-Farahani, Farzad ;
Sadeghy, Kayvan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (02) :473-488
[4]  
Cattaneo C., 1949, Atti Sem. Mat. Fis. Univ. Modena, V3, P83
[5]   Maxwell fluid suction flow in a channel [J].
Choi, JJ ;
Rusak, Z ;
Tichy, JA .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1999, 85 (2-3) :165-187
[6]   On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction [J].
Christov, C. I. .
MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (04) :481-486
[7]   Uniqueness and structural stability for the Cattaneo-Christov equations [J].
Ciarletta, M. ;
Straughan, B. .
MECHANICS RESEARCH COMMUNICATIONS, 2010, 37 (05) :445-447
[8]  
Fourier JBJ, 1822, Theorie analytique de la chaleur, V504
[9]   Thermal instability in Brinkman porous media with Cattaneo-Christov heat flux [J].
Haddad, S. A. M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 68 :659-668
[10]   MHD flow and mass transfer of a upper-convected Maxwell fluid past a porous shrinking sheet with chemical reaction species [J].
Hayat, T. ;
Abbas, Z. ;
Ali, N. .
PHYSICS LETTERS A, 2008, 372 (26) :4698-4704