Achieving 5,000-h and 8,000-h Low-PGM Electrode Durability on Automotive Drive Cycles

被引:29
作者
Ahluwalia, R. K. [1 ]
Wang, X. [1 ]
Peng, J-K [1 ]
Konduru, V. [2 ]
Arisetty, S. [2 ]
Ramaswamy, N. [2 ]
Kumaraguru, S. [2 ]
机构
[1] Argonne Natl Lab, Argonne, IL 60439 USA
[2] Gen Motors Co, Global Fuel Cell Business, Pontiac, MI 48340 USA
关键词
Durability; Low-PGM Electrode; Automotive Drive Cycles; Performance; FUEL-CELL ELECTRODES; CATALYST DEGRADATION; PERFORMANCE; IMPACT; PEMFC; DISSOLUTION; RESISTANCE; MODEL; ORR;
D O I
10.1149/1945-7111/abf507
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Whereas total Pt loading in anode and cathode catalysts below 0.125 mg cm(-2) is required to meet the stringent cost target for automotive fuel cell systems (FCS) for light duty vehicles, low-loaded cathode catalysts are susceptible to unacceptable aging-related performance losses at high current densities. A framework model, validated by accelerated stress test data, has identified cell voltage, relative humidity (RH) and temperature as the key operating variables that affect degradation of a high-activity d-PtCo/C cathode catalyst with 0.1 mg cm(-2) Pt loading. Drive cycle simulations indicate that these can be controlled by properly selecting the minimum FCS power, compressor-expander module (CEM) turndown, and stack coolant temperature. The optimum system parameters are 4-kW(e) minimum power for an 80-kW(e) FCS, CEM turndown of 12.5, and 66 degrees C average coolant exit temperature that combine to limit the maximum cell voltage to 850 mV and outlet RH to 90%-100%. Depending on Pt loading, the mismatch between actual and allowable degradation for 10% power loss over 5,000-h lifetime requires the stack to be oversized by 2.4%-5%, resulting in 8.4%-41% lower Pt utilization and 7.1%-20.5% penalty in stack cost. The corresponding results for 8,000-h lifetime are 10.3%-14% stack oversizing, 23%-51.8% lower Pt utilization, and 24.1%-35.4% stack cost penalty.
引用
收藏
页数:14
相关论文
共 35 条
  • [1] Ahluwalia R., 2019, ANN MER REV PEER EV
  • [2] Rapid self-start of polymer electrolyte fuel cell stacks from subfreezing temperatures
    Ahluwalia, R. K.
    Wang, X.
    [J]. JOURNAL OF POWER SOURCES, 2006, 162 (01) : 502 - 512
  • [3] Performance of Polymer Electrolyte Fuel Cell Electrodes with Atomically Dispersed (AD) Fe-C-N ORR Catalyst
    Ahluwalia, R. K.
    Wang, X.
    Osmieri, L.
    Peng, J-K
    Chung, H. T.
    Neyerlin, K. C.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (14) : F1096 - F1104
  • [4] Long-Term Stability of Nanostructured Thin Film Electrodes at Operating Potentials
    Ahluwalia, R. K.
    Peng, J. -K.
    Wang, X.
    Cullen, D. A.
    Steinbach, A. J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) : F306 - F320
  • [5] Performance of advanced automotive fuel cell systems with heat rejection constraint
    Ahluwalia, R. K.
    Wang, X.
    Steinbach, A. J.
    [J]. JOURNAL OF POWER SOURCES, 2016, 309 : 178 - 191
  • [6] Potential Dependence of Pt and Co Dissolution from Platinum-Cobalt Alloy PEFC Catalysts Using Time-Resolved Measurements
    Ahluwalia, Rajesh K.
    Papadias, Dionissios D.
    Kariuki, Nancy N.
    Peng, Jui-Kun
    Wang, Xiaoping
    Tsai, Yifen
    Graczyk, Donald G.
    Myers, Deborah J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (06) : F3024 - F3035
  • [7] Enhancement of service life of polymer electrolyte fuel cells through application of nanodispersed ionomer
    Ahn, Chi-Yeong
    Ahn, Juhee
    Kang, Sun Young
    Kim, Ok-Hee
    Lee, Dong Woog
    Lee, Ji Hyun
    Shim, Jae Goo
    Lee, Chang Hyun
    Cho, Yong-Hun
    Sung, Yung-Eun
    [J]. SCIENCE ADVANCES, 2020, 6 (05):
  • [8] Arisetty S., 2020, DURABILITY LOW PGM E, DOI [10.1149/MA2020-02362343mtgabs, DOI 10.1149/MA2020-02362343MTGABS]
  • [9] Measurement of Oxygen Transport Resistance in PEM Fuel Cells by Limiting Current Methods
    Baker, Daniel R.
    Caulk, David A.
    Neyerlin, Kenneth C.
    Murphy, Michael W.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (09) : B991 - B1003
  • [10] Temperature effects on PEM fuel cells Pt/C catalyst degradation
    Bi, Wu
    Fuller, Thomas. F.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) : B215 - B221