Achieving 5,000-h and 8,000-h Low-PGM Electrode Durability on Automotive Drive Cycles

被引:30
作者
Ahluwalia, R. K. [1 ]
Wang, X. [1 ]
Peng, J-K [1 ]
Konduru, V. [2 ]
Arisetty, S. [2 ]
Ramaswamy, N. [2 ]
Kumaraguru, S. [2 ]
机构
[1] Argonne Natl Lab, Argonne, IL 60439 USA
[2] Gen Motors Co, Global Fuel Cell Business, Pontiac, MI 48340 USA
关键词
Durability; Low-PGM Electrode; Automotive Drive Cycles; Performance; FUEL-CELL ELECTRODES; CATALYST DEGRADATION; PERFORMANCE; IMPACT; PEMFC; DISSOLUTION; RESISTANCE; MODEL; ORR;
D O I
10.1149/1945-7111/abf507
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Whereas total Pt loading in anode and cathode catalysts below 0.125 mg cm(-2) is required to meet the stringent cost target for automotive fuel cell systems (FCS) for light duty vehicles, low-loaded cathode catalysts are susceptible to unacceptable aging-related performance losses at high current densities. A framework model, validated by accelerated stress test data, has identified cell voltage, relative humidity (RH) and temperature as the key operating variables that affect degradation of a high-activity d-PtCo/C cathode catalyst with 0.1 mg cm(-2) Pt loading. Drive cycle simulations indicate that these can be controlled by properly selecting the minimum FCS power, compressor-expander module (CEM) turndown, and stack coolant temperature. The optimum system parameters are 4-kW(e) minimum power for an 80-kW(e) FCS, CEM turndown of 12.5, and 66 degrees C average coolant exit temperature that combine to limit the maximum cell voltage to 850 mV and outlet RH to 90%-100%. Depending on Pt loading, the mismatch between actual and allowable degradation for 10% power loss over 5,000-h lifetime requires the stack to be oversized by 2.4%-5%, resulting in 8.4%-41% lower Pt utilization and 7.1%-20.5% penalty in stack cost. The corresponding results for 8,000-h lifetime are 10.3%-14% stack oversizing, 23%-51.8% lower Pt utilization, and 24.1%-35.4% stack cost penalty.
引用
收藏
页数:14
相关论文
共 35 条
[1]  
Ahluwalia R., 2019, ANN MER REV PEER EV
[2]   Rapid self-start of polymer electrolyte fuel cell stacks from subfreezing temperatures [J].
Ahluwalia, R. K. ;
Wang, X. .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :502-512
[3]   Performance of Polymer Electrolyte Fuel Cell Electrodes with Atomically Dispersed (AD) Fe-C-N ORR Catalyst [J].
Ahluwalia, R. K. ;
Wang, X. ;
Osmieri, L. ;
Peng, J-K ;
Chung, H. T. ;
Neyerlin, K. C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (14) :F1096-F1104
[4]   Long-Term Stability of Nanostructured Thin Film Electrodes at Operating Potentials [J].
Ahluwalia, R. K. ;
Peng, J. -K. ;
Wang, X. ;
Cullen, D. A. ;
Steinbach, A. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :F306-F320
[5]   Performance of advanced automotive fuel cell systems with heat rejection constraint [J].
Ahluwalia, R. K. ;
Wang, X. ;
Steinbach, A. J. .
JOURNAL OF POWER SOURCES, 2016, 309 :178-191
[6]   Potential Dependence of Pt and Co Dissolution from Platinum-Cobalt Alloy PEFC Catalysts Using Time-Resolved Measurements [J].
Ahluwalia, Rajesh K. ;
Papadias, Dionissios D. ;
Kariuki, Nancy N. ;
Peng, Jui-Kun ;
Wang, Xiaoping ;
Tsai, Yifen ;
Graczyk, Donald G. ;
Myers, Deborah J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (06) :F3024-F3035
[7]   Enhancement of service life of polymer electrolyte fuel cells through application of nanodispersed ionomer [J].
Ahn, Chi-Yeong ;
Ahn, Juhee ;
Kang, Sun Young ;
Kim, Ok-Hee ;
Lee, Dong Woog ;
Lee, Ji Hyun ;
Shim, Jae Goo ;
Lee, Chang Hyun ;
Cho, Yong-Hun ;
Sung, Yung-Eun .
SCIENCE ADVANCES, 2020, 6 (05)
[8]  
Arisetty S., 2020, DURABILITY LOW PGM E, DOI [10.1149/MA2020-02362343mtgabs, DOI 10.1149/MA2020-02362343MTGABS]
[9]   Measurement of Oxygen Transport Resistance in PEM Fuel Cells by Limiting Current Methods [J].
Baker, Daniel R. ;
Caulk, David A. ;
Neyerlin, Kenneth C. ;
Murphy, Michael W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (09) :B991-B1003
[10]   Temperature effects on PEM fuel cells Pt/C catalyst degradation [J].
Bi, Wu ;
Fuller, Thomas. F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :B215-B221