Partition identities involving gaps and weights

被引:34
作者
Alladi, K [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
partitions; weights; gaps; Durfee squares; powers of 2;
D O I
10.1090/S0002-9947-97-01831-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain interesting new identities connecting the famous partition functions of Euler, Gauss, Lebesgue, Rogers-Ramanujan and others by attaching weights to the gaps between parts. The weights are in general multiplicative. Some identities involve powers of 2 as weights and yield combinatorial information about some remarkable partition congruences modulo powers of 2.
引用
收藏
页码:5001 / 5019
页数:19
相关论文
共 16 条
[1]   PARTITION-IDENTITIES AND A CONTINUED-FRACTION OF RAMANUJAN [J].
ALLADI, K ;
GORDON, B .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 63 (02) :275-300
[2]   REFINEMENTS AND GENERALIZATIONS OF CAPPARELLI CONJECTURE ON PARTITIONS [J].
ALLADI, K ;
ANDREWS, G .
JOURNAL OF ALGEBRA, 1995, 174 (02) :636-658
[3]  
ALLADI K, IN PRESS T AM MATH S
[4]  
ALLADI K, DIVISIBILITY CERTAIN
[5]  
Andrews G. E., 1976, The Theory of Partitions
[6]   PARTITIONS AND DURFEE DISSECTION [J].
ANDREWS, GE .
AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (03) :735-742
[7]  
ANDREWS GE, 1979, PARTITIONS YESTERDAY
[8]  
[Anonymous], AM J MATH, DOI 10.2307/2369545
[9]  
Bowman D, 1996, ACTA ARITH, V74, P97
[10]  
BRESSOUD DM, 1979, J REINE ANGEW MATH, V305, P215