Making Messy Data Work for Conservation

被引:58
作者
Dobson, A. D. M. [1 ]
Milner-Gulland, E. J. [2 ]
Aebischer, Nicholas J. [3 ]
Beale, Colin M. [4 ]
Brozovic, Robert [5 ]
Coals, Peter [6 ]
Critchlow, Rob [4 ]
Dancer, Anthony [7 ]
Greve, Michelle [8 ]
Hinsley, Amy [6 ]
Ibbett, Harriet [9 ]
Johnston, Alison [10 ]
Kuiper, Timothy [2 ]
Le Comber, Steven [11 ]
Mahood, Simon P. [12 ,13 ]
Moore, Jennifer F. [14 ]
Nilsen, Erlend B. [15 ]
Pocock, Michael J. O. [16 ]
Quinn, Anthony [17 ]
Travers, Henry [2 ]
Wilfred, Paulo [18 ]
Wright, Joss [19 ]
Keane, Aidan [1 ]
机构
[1] Univ Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland
[2] Univ Oxford, Dept Zool, Oxford, England
[3] Game & Wildlife Conservat Trust, Fordingbridge, England
[4] Univ York, Dept Biol, York, N Yorkshire, England
[5] Frankfurt Zool Soc, Frankfurt, Germany
[6] Univ Oxford, Dept Zool, Wildlife Conservat Res Unit, Oxford, England
[7] Zool Soc London, London, England
[8] Univ Pretoria, Dept Plant & Soil Sci, Pretoria, South Africa
[9] Univ Bangor, Sch Nat Sci, Bangor, Gwynedd, Wales
[10] Cornell Univ, Dept Ornithol, Ithaca, NY USA
[11] Queen Mary Univ London, Sch Biol & Chem Sci, London, England
[12] Wildlife Conservat Soc, Cambodia Program, Phnom Penh, Cambodia
[13] Charles Darwin Univ, Res Inst Environm & Livelihoods, Casuarina, NT, Australia
[14] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL USA
[15] Norwegian Inst Nat Res, Dept Terr Ecol, Trondheim, Norway
[16] UK Ctr Ecol & Hydrol, Wallingford, Oxon, England
[17] Univ Southampton, Dept Sociol Social Policy & Criminol, Southampton, Hants, England
[18] Open Univ Tanzania, Dept Life Sci, Dar Es Salaam, Tanzania
[19] Univ Oxford, Oxford Internet Inst, Oxford, England
来源
ONE EARTH | 2020年 / 2卷 / 05期
基金
英国自然环境研究理事会;
关键词
DATA-INTENSIVE SCIENCE; CITIZEN SCIENCE; BIG DATA; IMPROVE; BIAS; INFORMATION; TRADE; BIODIVERSITY; MANAGEMENT; SEIZURES;
D O I
10.1016/j.oneear.2020.04.012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Conservationists increasingly use unstructured observational data, such as citizen science records or ranger patrol observations, to guide decision making. These datasets are often large and relatively cheap to collect, and they have enormous potential. However, the resulting data are generally "messy,'' and their use can incur considerable costs, some of which are hidden. We present an overview of the opportunities and limitations associated with messy data by explaining how the preferences, skills, and incentives of data collectors affect the quality of the information they contain and the investment required to unlock their potential. Drawing widely from across the sciences, we break down elements of the observation process in order to highlight likely sources of bias and error while emphasizing the importance of cross-disciplinary collaboration. We propose a framework for appraising messy data to guide those engaging with these types of dataset and make them work for conservation and broader sustainability applications.
引用
收藏
页码:455 / 465
页数:11
相关论文
共 102 条
  • [1] Aceves-Bueno E., 2017, B ECOL SOC AM, V98, P278, DOI DOI 10.1002/BES2.1336
  • [2] Alender B, 2016, JCOM-J SCI COMMUN, V15
  • [3] [Anonymous], 2016, METHOD INNOV
  • [4] [Anonymous], 2017, MAINE POLICY REV
  • [5] Enhancing plant biosecurity with citizen science monitoring: comparing methodologies using reports of acute oak decline
    Baker, E.
    Jeger, M. J.
    Mumford, J. D.
    Brown, N.
    [J]. JOURNAL OF GEOGRAPHICAL SYSTEMS, 2019, 21 (01) : 111 - 131
  • [6] Youth-focused citizen science: Examining the role of environmental science learning and agency for conservation
    Ballard, Heidi L.
    Dixon, Colin G. H.
    Harris, Emily M.
    [J]. BIOLOGICAL CONSERVATION, 2017, 208 : 65 - 75
  • [7] Do Big Unstructured Biodiversity Data Mean More Knowledge?
    Bayraktarov, Elisa
    Ehmke, Glenn
    O'Connor, James
    Burns, Emma L.
    Nguyen, Hoang A.
    McRae, Louise
    Possingham, Hugh P.
    Lindenmayer, David B.
    [J]. FRONTIERS IN ECOLOGY AND EVOLUTION, 2019, 6
  • [8] A hybrid is born: Integrating collective sensing, citizen science and professional monitoring of the environment
    Becken, Susanne
    Connolly, Rod M.
    Chen, Jinyan
    Stantic, Bela
    [J]. ECOLOGICAL INFORMATICS, 2019, 52 : 35 - 45
  • [9] Data triangulation in the context of opioids monitoring via wastewater analyses
    Been, Frederic
    Benaglia, Lisa
    Lucia, Sonia
    Gervasoni, Jean-Pierre
    Esseiva, Pierre
    Delemont, Olivier
    [J]. DRUG AND ALCOHOL DEPENDENCE, 2015, 151 : 203 - 210
  • [10] The impact of hunting on tropical mammal and bird populations
    Benitez-Lopez, A.
    Alkemade, R.
    Schipper, A. M.
    Ingram, D. J.
    Verweij, P. A.
    Eikelboom, J. A. J.
    Huijbregts, M. A. J.
    [J]. SCIENCE, 2017, 356 (6334) : 180 - 183