Decay characterization of solutions to generalized Hall-MHD system in R3

被引:9
作者
Zhao, Xiaopeng [1 ]
Zhu, Mingxuan [2 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] Jiaxing Univ, Dept Math, Jiaxing 314001, Peoples R China
基金
浙江省自然科学基金; 中国博士后科学基金; 中国国家自然科学基金;
关键词
NAVIER-STOKES EQUATIONS; BLOW-UP CRITERIA; GLOBAL EXISTENCE; WELL-POSEDNESS; MAGNETO-HYDRODYNAMICS; MAGNETOHYDRODYNAMICS; REGULARITY; BEHAVIOR;
D O I
10.1063/1.5040409
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the Fourier splitting method and the properties of decay character r*, we establish the time decay rate in the L-2-norm for the weak solutions and the higher-order derivative of solutions for the generalized Hall-magnetohydrodynamic equations in R 3. In particular, when (u(0), b(0)) is an element of H-s(R-3) boolean AND L-1(R-3) has decay character r* (u(0)) = r* (b(0)) = 0 and alpha = beta = 1, then we recover the previous results of Chae and Schonbek [J. Differ. Equations 255, 3971-3982 (2013)]. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 34 条
[1]   Hamiltonian formalism of extended magnetohydrodynamics [J].
Abdelhamid, H. M. ;
Kawazura, Y. ;
Yoshida, Z. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (23)
[2]   KINETIC FOR MULATION AND GLOBAL EXISTENCE FOR THE HALL-MAGNETO-HYDRODYNAMICS SYSTEM [J].
Acheritogaray, Marion ;
Degond, Pierre ;
Frouvelle, Amic ;
Liu, Jian-Guo .
KINETIC AND RELATED MODELS, 2011, 4 (04) :901-918
[3]   Two-fluid turbulence including electron inertia [J].
Andres, Nahuel ;
Gonzalez, Carlos ;
Martin, Luis ;
Dmitruk, Pablo ;
Gomez, Daniel .
PHYSICS OF PLASMAS, 2014, 21 (12)
[4]   Effects of electron inertia in collisionless magnetic reconnection [J].
Andres, Nahuel ;
Martin, Luis ;
Dmitruk, Pablo ;
Gomez, Daniel .
PHYSICS OF PLASMAS, 2014, 21 (07)
[5]  
Bjorland C, 2009, ADV DIFFERENTIAL EQU, V14, P241
[6]   CHARACTERIZATION OF SOLUTIONS TO DISSIPATIVE SYSTEMS WITH SHARP ALGEBRAIC DECAY [J].
Brandolese, Lorenzo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) :1616-1633
[7]   Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic Diffusion [J].
Chae, Dongho ;
Wan, Renhui ;
Wu, Jiahong .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (04) :627-638
[8]   Well-posedness for Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Degond, Pierre ;
Liu, Jian-Guo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :555-565
[9]   the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Lee, Jihoon .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (11) :3835-3858
[10]   On the temporal decay for the Hall-magnetohydrodynamic equations [J].
Chae, Dongho ;
Schonbek, Maria .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) :3971-3982