Building a Feature-Space for Visual Surveillance

被引:0
|
作者
Altahir, Altahir A. [1 ]
Asirvadam, Vijanth S. [1 ]
机构
[1] Univ Teknol PETRONAS, Dept Elect & Elect Engn, Bandar Seri Iskandar, Perak D Ridzuan, Malaysia
来源
2014 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS 2014) | 2014年
关键词
Visual surveillance; human motion understanding; feature selection; feature extraction;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual surveillance applications play essential roles as a tool for archiving and to some extend preventing criminal activities. The future of visual surveillance applications relies on the developments in the area of computer vision, human motion analysis and computer algorithms. This paper considers objects low level feature selection and extraction from video frames in order to construct a feature space for visual surveillance applications. Moreover, our paper explains the basic concept of feature extraction and the procedures required to extract these features. Constructing the feature space for surveillance applications is also touched through this paper based on a straightforward scenario of a single human walking. Finally, the paper illustrates the results of the extracted features.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] NEAR-OPTIMAL GEOMETRIC FEATURE SELECTION FOR VISUAL SPEECH RECOGNITION
    Singh, Preety
    Laxmi, Vijay
    Gaur, Manoj Singh
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2013, 27 (08)
  • [32] Research on Visual Speech Feature Extraction
    He Jun
    Zhang Hua
    2009 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND TECHNOLOGY, VOL II, PROCEEDINGS, 2009, : 499 - 502
  • [33] Visual learning by coevolutionary feature synthesis
    Krawiec, K
    Bhanu, B
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2005, 35 (03): : 409 - 425
  • [34] Salient feature selection for visual tracking
    Kang, W. -S.
    Na, J. H.
    Choi, J. Y.
    ELECTRONICS LETTERS, 2012, 48 (18) : 1123 - U150
  • [35] Feature and Region Selection for Visual Learning
    Zhao, Ji
    Wang, Liantao
    Cabral, Ricardo
    De la Torre, Fernando
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (03) : 1084 - 1094
  • [36] Unsupervised feature selection guided by orthogonal representation of feature space
    Jahani, Mahsa Samareh
    Aghamollaei, Gholamreza
    Eftekhari, Mahdi
    Saberi-Movahed, Farid
    NEUROCOMPUTING, 2023, 516 : 61 - 76
  • [37] An Approach to Feature Space Construction from Clustering Feature Tree
    Dudarin, Pavel
    Samokhvalov, Mikhail
    Yarushkina, Nadezhda
    ARTIFICIAL INTELLIGENCE (RCAI 2018), 2018, 934 : 176 - 189
  • [38] Unsupervised feature selection for visual classification via feature representation property
    He, Wei
    Zhu, Xiaofeng
    Cheng, Debo
    Hu, Rongyao
    Zhang, Shichao
    NEUROCOMPUTING, 2017, 236 : 5 - 13
  • [39] A one-class feature extraction method based on space decomposition
    Huang, Guangzao
    Chen, Xiaojing
    Chen, Xi
    Chen, Xiao
    Shi, Wen
    SOFT COMPUTING, 2022, 26 (12) : 5553 - 5561
  • [40] Physics-Informed Feature Space Evaluation for Diagnostic Power Monitoring
    Green, Daisy H.
    Langham, Aaron W.
    Agustin, Rebecca A.
    Quinn, Devin W.
    Leeb, Steven B.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 2363 - 2373