Quasilinear critical gradient model for Alfven eigenmode driven energetic particle transport with intermittency

被引:2
|
作者
Waltz, R. E. [1 ]
Bass, E. M. [2 ]
Collins, C. S. [1 ]
Gage, K. [3 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] Univ Calif San Diego, San Diego, CA 92103 USA
[3] Univ Calif Irvine, Irvine, CA USA
关键词
energetic particles; quasilinear model; critica gradient model; Alfven eigenmodes;
D O I
10.1088/1741-4326/abdac0
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A simplified quasilinear critical gradient model (QLCGM) for Alfven eigenmode (AE) driven energetic particle (EP) transport is used to treat the intermittency (burstiness) of the transport. Here intermittency is defined as the ratio of the root mean square deviation from mean flow to the mean flow. The model posits that the intermittency results from the micro-turbulent noise induced in the thermal plasma damping rate for the AE. The model is embedded in a time-dependent EP density transport code to generate the transport-flow time traces from typical critical gradient and slowing down density profiles. The QLCGM appears to be in reasonable agreement with the level and characteristics of the intermittency observed in the DIII-D fast particle loss detector flow time traces: high kurtosis [O(40)] of the burstiness with the intermittency O(1-2) increasing with the level of mean flow.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Prediction of Alfven eigenmode energetic particle transport in ITER scenarios with a critical gradient model
    Bass, E. M.
    Waltz, R. E.
    NUCLEAR FUSION, 2020, 60 (01)
  • [2] Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments
    Waltz, R. E.
    Bass, E. M.
    Heidbrink, W. W.
    VanZeeland, M. A.
    NUCLEAR FUSION, 2015, 55 (12)
  • [3] Alfven eigenmode stability and critical gradient energetic particle transport using the Trapped-Gyro-Landau-Fluid model
    Sheng, He
    Waltz, R. E.
    Staebler, G. M.
    PHYSICS OF PLASMAS, 2017, 24 (07)
  • [4] Alfven eigenmode induced energetic particle transport in jet
    JET Joint Undertaking, Oxfordshire, United Kingdom
    Nucl Fusion, 12 (1697-1705):
  • [5] Alfven eigenmode induced energetic particle transport in JET
    Appel, LC
    Berk, HL
    Borba, D
    Breizman, BN
    Hender, TC
    Huysmans, GTA
    Kerner, W
    Pekker, MS
    Pinches, SD
    Sharapov, SE
    NUCLEAR FUSION, 1995, 35 (12) : 1697 - 1705
  • [6] Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes
    Bass, E. M.
    Waltz, R. E.
    PHYSICS OF PLASMAS, 2017, 24 (12)
  • [7] Alfven eigenmode stability analysis and energetic particle transport prediction for CFETR hybrid scenario
    Zou, Yunpeng
    Ye, Minyou
    PLASMA SCIENCE & TECHNOLOGY, 2019, 21 (09)
  • [8] Mode structure symmetry breaking of energetic particle driven beta-induced Alfven eigenmode
    Lu, Z. X.
    Wang, X.
    Lauber, Ph.
    Zonca, F.
    PHYSICS OF PLASMAS, 2018, 25 (01)
  • [9] Critical energetic particle distribution in phase space for the Alfven eigenmode burst with global resonance overlap
    Todo, Y.
    NUCLEAR FUSION, 2019, 59 (09)
  • [10] Alfven eigenmode and energetic particle research in JT-60U
    Kimura, H
    Kusama, Y
    Saigusa, M
    Kramer, GJ
    Tobita, K
    Nemoto, M
    Kondoh, T
    Nishitani, T
    Da Costa, O
    Ozeki, T
    Oikawa, T
    Moriyama, S
    Morioka, A
    Fu, GY
    Cheng, CZ
    Afanas'ev, VI
    NUCLEAR FUSION, 1998, 38 (09) : 1303 - 1314