Multi-robot Target Encirclement Control with Collision Avoidance via Deep Reinforcement Learning

被引:42
|
作者
Ma, Junchong [1 ]
Lu, Huimin [1 ]
Xiao, Junhao [1 ]
Zeng, Zhiwen [1 ]
Zheng, Zhiqiang [1 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 410073, Hunan, Peoples R China
关键词
Multi-robot; Deep reinforcement learning; Encirclement control; Collision avoidance; ANONYMOUS MOBILE AGENTS; COOPERATIVE CONTROL; NETWORKS; SYSTEMS; GAME; GO;
D O I
10.1007/s10846-019-01106-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The target encirclement control of multi-robot systems via deep reinforcement learning has been investigated in this paper. Inspired by the encirclement behavior of dolphins to entrap the fishes, the encirclement control is mainly to enforce the robots to achieve a capturing formation pattern around a target, and can be widely applied in many areas such as coverage, patrolling, escorting, etc. Different from traditional methods, we propose a deep reinforcement learning framework for multi-robot target encirclement formation control, combining the advantages of the deep neural network and deterministic policy gradient algorithm, which is free from the complicated work of building the control model and designing the control law. Our method provides a distributed control architecture for each robot in continuous action space, relying only on local teammate information. Besides, the behavioral output at each time step is determined by its own independent network. In addition, both the robots and the moving target can be trained simultaneously. In that way, both cooperation and competition can be contained, and the results validate the effectiveness of the proposed algorithm.
引用
收藏
页码:371 / 386
页数:16
相关论文
共 50 条
  • [1] Multi-robot Target Encirclement Control with Collision Avoidance via Deep Reinforcement Learning
    Junchong Ma
    Huimin Lu
    Junhao Xiao
    Zhiwen Zeng
    Zhiqiang Zheng
    Journal of Intelligent & Robotic Systems, 2020, 99 : 371 - 386
  • [2] Multi-Target Encirclement with Collision Avoidance via Deep Reinforcement Learning using Relational Graphs*
    Zhang, Tianle
    Liu, Zhen
    Pu, Zhiqiang
    Yi, Jianqiang
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 8794 - 8800
  • [3] Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning
    Long, Pinxin
    Fan, Tingxiang
    Liao, Xinyi
    Liu, Wenxi
    Zhang, Hao
    Pan, Jia
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 6252 - 6259
  • [4] Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios
    Fan, Tingxiang
    Long, Pinxin
    Liu, Wenxi
    Pan, Jia
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (07): : 856 - 892
  • [5] Multi-Robot Collision Avoidance with Map-based Deep Reinforcement Learning
    Yao, Shunyi
    Chen, Guangda
    Pan, Lifan
    Ma, Jun
    Ji, Jianmin
    Chen, Xiaoping
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 532 - 539
  • [6] Decentralized multi-robot encirclement of a 3D target with guaranteed collision avoidance
    Franchi, Antonio
    Stegagno, Paolo
    Oriolo, Giuseppe
    AUTONOMOUS ROBOTS, 2016, 40 (02) : 245 - 265
  • [7] Decentralized multi-robot encirclement of a 3D target with guaranteed collision avoidance
    Antonio Franchi
    Paolo Stegagno
    Giuseppe Oriolo
    Autonomous Robots, 2016, 40 : 245 - 265
  • [8] Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning
    Chen, Guangda
    Yao, Shunyi
    Ma, Jun
    Pan, Lifan
    Chen, Yu'an
    Xu, Pei
    Ji, Jianmin
    Chen, Xiaoping
    SENSORS, 2020, 20 (17) : 1 - 33
  • [9] Collision avoidance in multi-robot systems based on multi-layered reinforcement learning
    Arai, Y
    Fujii, T
    Asama, H
    Kaetsu, H
    Endo, I
    ROBOTICS AND AUTONOMOUS SYSTEMS, 1999, 29 (01) : 21 - 32
  • [10] Multi-Robot Flocking Control Based on Deep Reinforcement Learning
    Zhu, Pengming
    Dai, Wei
    Yao, Weijia
    Ma, Junchong
    Zeng, Zhiwen
    Lu, Huimin
    IEEE ACCESS, 2020, 8 : 150397 - 150406